
Anatomy of a Scalable Software Transactional Memory

Yossi Lev
Brown University and

Sun Microsystems Laboratories
yosef.lev@sun.com

Victor Luchangco
Virendra J. Marathe

Mark Moir Dan Nussbaum
Sun Microsystems Laboratories

{victor.luchangco,virendra.marathe,mark.moir,dan.nussbaum}@sun.com

Marek Olszewski
Massachusetts Institute of Technology
and Sun Microsystems Laboratories

mareko@csail.mit.edu

Abstract
Existing software transactional memory (STM) implementations
often exhibit poor scalability, usually because of nonscalable mech-
anisms for read sharing, transactional consistency, and privatiza-
tion; some STMs also have nonscalable centralized commit mecha-
nisms. We describe novel techniques to eliminate bottlenecks from
all of these mechanisms, and present SkySTM, which employs
these techniques. SkySTM is the first STM that supports privatiza-
tion and scales on modern multicore multiprocessors with hundreds
of hardware threads on multiple chips.

A central theme in this work is avoiding frequent updates to
centralized metadata, especially for multi-chip systems, in which
the cost of accessing centralized metadata increases dramatically.
A key mechanism we use to do so is a scalable nonzero indicator
(SNZI), which was designed for this purpose. A secondary contri-
bution of the paper is a new and simplified SNZI algorithm.

Our scalable privatization mechanism imposes only about 4%
overhead in low-contention experiments; when contention is higher,
the overhead still reaches only 35% with over 250 threads. In
contrast, prior approaches have been reported as imposing over
100% overhead in some cases, even with only 8 threads.

1. Introduction
The advent of multicore chips has made multiprocessors ubiquitous,
and the hardware threads per chip and multicore chips per multi-
processor system continue to increase. Scalable applications—that
is, applications that can effectively exploit more hardware threads
as they become available—are difficult to construct due to trade-
offs between performance, scalability, and complexity. Traditional
lock-based programming is too difficult and error-prone to support
widespread development of scalable applications.

Transactional memory [13] has gained momentum as an alterna-
tive to lock-based programming. With transactional memory, rather
than using locks to ensure that critical sections of code appear
atomic, a programmer simply indicates that such a section should
be executed as a transaction; the system is responsible for guaran-
teeing that the transaction appears to execute atomically.

Many proposals exist for implementing transactional memory
in hardware [13, 2, 22, 31], software [26, 7, 12, 18, 21], and a
combination of the two [5, 17, 4, 25, 15, 3]; realizing and improving
these implementations remains an active area of research. Unless
hardware support for transactional memory becomes as ubiquitous
as multiprocessors, and until such a time, software transactional
memory (STM) is necessary to support transactional programming.

Recent advances in STM performance [7, 29, 24] have been
achieved mostly by using centralized synchronization mechanisms.

Copyright 2009 Sun Microsystems, Inc. All rights reserved.

However, these mechanisms generally do not scale well to large
numbers of threads, especially in multi-chip shared memory sys-
tems, in which frequent modifications of centralized data struc-
tures leads to high latency and excessive memory coherence traffic.
These problems are exacerbated when we consider STMs that sup-
port privatization[8, 14, 27, 20], which is widely considered to be
important for providing an intuitive programming model.

In this paper, we presentSkySTM,1 the first STM that supports
privatization and can scale to systems with hundreds of hardware
threads across multiple multicore chips. We are releasing an open-
source library containing SkySTM and other STMs discussed in
this paper (see [1]).

SkySTM is designed to work in ahybrid transactional memory
[5] system, allowing transactions to be executed using hardware
transactional memory support if available and effective, otherwise
running transactions in software. Hybrid transactional memory re-
quires hardware and software transactions to interoperate correctly.
SkySTM is designed to minimize overhead for hardware transac-
tions and to avoid aborting them unnecessarily.

Our contributions include detailed descriptions of novel scalable
mechanisms for efficiently ensuring transactional consistency and
for supporting read sharing and a privatization guarantee, along
with performance experiments demonstrating their effectiveness in
achieving a scalable STM. Below we provide some background to
provide context for these mechanisms.

1.1 Scalability of STMs

Early STM systems either imposed substantial overhead in order
to guarantee that user code always executes in a “consistent” state,
or allowed inconsistent states to be observed, which can lead to
arbitrary behavior in unmanaged languages such as C and C++. Re-
cent breakthroughs in STM performance can be attributed largely
to clever mechanisms for guaranteeing consistent transactional ex-
ecution with much lower overhead than previous approaches. For
example, the TL2 STM [7] uses a timestamp mechanism to allow
the system to verify in constant time that each new transactional
read is consistent with the previous ones.

TL2’s timestamp mechanism—and other related techniques for
reducing the overhead of maintaining consistency—uses central-
ized metadata that is modified by every transaction in the worst
case. TL2’s careful integration of a central timestamp mechanism
yields excellent performance compared to other STMs, and reason-
able scalability up to a point. However, as we show, in systems with
multiple multicore chips, the cost of frequently modifying the cen-
tralized timestamp increases dramatically, and the algorithm stops
scaling. Other algorithms that frequently update centralized data
structures are likely to suffer similarly.

1 The name SkySTM is a play on the words “Scalable Hybrid STM”.

Variants on the basic TL2 algorithm can reduce the frequency
of updates to the global counter, thus significantly improving scal-
ability. However, neither the basic form of TL2 nor any of these
variants supports privatization. Marathe et al. [20] describe a vari-
ant of TL2 due to Detlefs et al. that supports privatization. We have
also implemented this variant and, as we show, its scalability on
multi-chip multicore systems is even worse than the basic form of
TL2.2 Moreover, as far as we know, the modifications required to
make TL2 support privatization are incompatible with the variants
to relieve pressure on the global counter. Thus, to date there is no
scalable STM that supports privatization.

Supporting privatization is not the only challenge in achieving
a scalable STM. Below we explain our general approach to achiev-
ing scalability, and discuss how we have applied this approach to
eliminate or reduce scalability bottlenecks in several aspects of the
STM, finishing with how we provide scalable privatization.

If a transactional application is not scalable due to contention on
applicationdata, the best STM cannot make it so. Thus, our goal is
to avoid using mechanisms in the STM thatintroducesynchroniza-
tion bottlenecks even when the application is scalable. A primary
design goal for achieving this is to avoid contention on the STM’s
metadata when contention on application data is low. This suggests
a conflict-basedapproach to synchronization, in which contention
on STM metadata is induced only (or at least primarily) when there
is contention on application data.3 This approach has driven the de-
velopment of the scalable STM mechanisms we present.

The first use of this approach concerns maintaining consistency
during transactional execution. Early STM systems designed by us
and others used eitherinvisible reads, in which each transaction
maintains per-read metadata to be revalidated after each subsequent
read; orvisible reads, in which each reader “registers” for each
memory location it reads, so that a transaction wishing to write it
can identify and abort such readers. Invisible read schemes imposed
substantial overhead on transactions due to the need for repeated
validation, and in hybrid TM contexts impose additional overhead
on hardware transactions to update metadata to allow software
readers to detect conflicts. Visible read schemes were complex,
expensive, and nonscalable.

These tradeoffs led us to developsemivisiblereads (originally
semi-transparent reads [16]): a transaction that wishes to write to
a memory location can determine whetheranyother transaction is
reading the location, but notwhich transaction(s). This enables us
to determine when writers conflict with readers and to maintain a
counter that is incremented whenever such a conflict occurs. With
care, we can arrange for transactions to avoid expensive validation
in the vast majority of cases by checking whetheranywriter-reader
conflict has occurred during its execution. The counter is updated
only when there are writer-reader conflicts, consistent with the
conflict-driven synchronization approach described above.

An obvious way to implement semivisible reads is to maintain
a counter of readers for each memory location. However this sim-
ple approach introduces metadata contention between transactions
that do not conflict (read sharing of application data causes con-
tended write sharing of metadata). This problem was one of the pri-
mary motivations behind Scalable NonZero Indicator (SNZI, pro-
nounced ”snazzy”) algorithms [9]. We exploit the fact that writers
need to know only if there areany conflicting readers, not how

2 Dice experimented with essentially the same algorithm in early 2007 [6],
but did not pursue it due to its poor performance.
3 As explained in Section 2.1, SkySTM hashes memory locations tometa-
data with the result that nonconflicting memory accesses in theapplication
can sometimes result in “false” conflicts, which can sometimes impede scal-
ability even when the application is scalable. In the remainder of the paper,
we include false conflicts when we refer to application conflicts; reducing
or eliminating false conflicts is future work.

many there are, to replace the nonscalable counter with a SNZI.
The integration of SNZI into SkySTM demonstrates that these ob-
jects are not merely of theoretical interest, but are also useful in
practice. A secondary contribution of our paper is to present a new
and simpler SNZI algorithm that we discovered recently.

1.2 Supporting privatization

Making an STM scalable is made more difficult by the so-called
privatization problem[8, 14, 27, 20]: A thread may use a transac-
tion to “isolate” a shared chunk of memory so that no other thread
should be able to access it (e.g., by setting all shared references to
that memory chunk toNULL), and thereafter (nontransactionally)
operate on that memory as though it were private. Allowing non-
transactional access to private memory is crucial for both perfor-
mance and interoperability reasons (see Section 5). However, with
many prior STM implementations, an isolated buffer may still be
written by another threadafter the thread isolating the buffer fin-
ishes committing. For example, in a deferred-writes STM (i.e., one
in which values written by a transaction are kept in a write set and
copied back to the memory when the transaction commits, as op-
posed to one which writes immediately in place and undoes those
writes if the transaction aborts), the other thread may have commit-
ted before the buffer was isolated but still be copying its write set
back to memory. A similar problem occurs with writes by aborted
transactions with STMs that perform in-place writes. These writes
may interfere with the thread that thinks the memory is private.

In many multithreaded applications, the “lifecycle” of a chunk
of memory is complex. For example, it may be used in a shared data
structure, then removed from that data structure, then passed to a
non-thread-safe legacy library for processing, then placed back into
a different shared data structure, and at some point it may be deallo-
cated. Requiring programmers to explicitly annotate code that “pri-
vatizes” a chunk of memory before it is accessed nontransactionally
or deallocated is undesirable: doing so will be error-prone, espe-
cially when incrementally adopting transactional programming into
a large lock-based application, and the resulting bugs will manifest
nondeterministically and be difficult to reproduce and diagnose.

Previous mechanisms forimplicit privatization, which address
this problem without requiring explicit annotation, rely on expen-
sive centralized mechanisms that severely impact scalability. For
example, experiments presented by Yoo et al. [32] show that allow-
ing programmers todisabletheir centralized privatization mecha-
nism can result in more than a 100% performance improvement
with just 8 threads in some cases. Allowing programmers to dis-
able privatization where it isnot needed is undoubtedly better than
requiring them to provide annotations where itis needed. However,
with such severe overhead, programmers will be motivated to dis-
able privatization aggressively. Apart from the additional burden
this places on the programmer, it is inevitable that programmers
will incorrectly disable privatization, or perhaps subsequent code
changes will render a previously correct usage incorrect, again re-
sulting in subtle nondeterministic bugs. We are therefore motivated
to find the best implicit privatization mechanisms possible to avoid
the need for explicit programmer annotations.

We present a novel privatization mechanism in which a privatiz-
ing transaction waits only forconflictingtransactions, in contrast to
the aforementioned mechanisms, which require transactions to wait
even for nonconflicting transactions. Thus, if the application has
few conflicts, the privatization mechanism does not impede its scal-
ability. Our scalable mechanisms for supporting transactional con-
sistency and read sharing facilitate our privatization mechanism.

Marathe et al. [20] recently introduced a new privatization mech-
anism that is similarly motivated. In particular, they too observe
that a privatizing transaction need not wait for others with which
it does not conflict. However, their solution requires a centralized

list of all active transactions, and their experiments confirm our in-
tuition that this list becomes a bottleneck and impedes scalability,
even on a single-chip multicore system.

In Section 2, we review the HyTM STM [5], from which
SkySTM evolved, and also some other relevant STMs. In Section 3,
we describe the mechanism we use to validate reads quickly with-
out introducing too much contention, and show how it improves
scalability over the centralized timestamp mechanism used in TL2
and other STMs. Section 4 describes our new SNZI algorithm and
shows how SNZI enables scalable read sharing. Section 5 discusses
our privatization guarantee, describes a scalable algorithm that pro-
vides this guarantee, and demonstrates that it incurs modest over-
head and does not impede scalability. We conclude in Section 6.

2. Background
2.1 The HyTM STM

The HyTM STM [5] uses a deferred writes approach, recording
transactional writes in a private write set until commit time, when
they are copied back to memory. A transaction can own a location
either for reading or for writing, where write ownership is exclu-
sive, and read ownership can be shared. Each location is associated
with anownership record(orec), which keeps the ownership infor-
mation for the locations4 with which it is associated.

Both the HyTM STM library and the SkySTM library support
various modes, for example invisible vs. semivisible reads, and ea-
ger vs. lazy ownership acquisition of locations to be written. In this
paper, we focus on semivisible reads and eager write acquisition,
and comment on differences for other modes where appropriate.

Write ownership is obtained by storing the id of the (unique)
owner in the appropriate orec. This ownership can be revoked only
after the current owner is aborted. For read ownership, the HyTM
STM uses semivisible reads, whereby a counter in the orec indi-
cates how many (but not which) transactions own it for reading. In
contrast to write ownership, when read ownership is revoked, the
owners are not notified and aborted; it is the readers’ responsibil-
ity to validate their read ownerships and abort themselves if any
of those ownerships are revoked. To do that, when a transaction ac-
quires an orec for reading (by incrementing the orec’s read counter),
it keeps a snapshot indicating the id of the last transaction that
write-owned the orec. These snapshots are kept in a private read
set, and are used tovalidatethe transaction, i.e., check whether any
of its read ownerships have been revoked. A completed transaction,
whether committed or aborted, relinquishes all its ownerships.

Using semivisible reads facilitates efficient interaction with
hardware transactions: When first accessing a location, a hardware
transaction checks the associated orec to make sure that the access
does not conflict with a software transaction. If the hardware trans-
action writes the location, it ensures that the read count is 0; if a
software transaction later changes the counter to a nonzero value,
the hardware transaction is aborted. Thus, the hardware transaction
need not change any metadata used by the STM, which is important
because we want to minimize the overhead for hardware transac-
tions. As we later show, semivisible reads also enables a scalable
mechanism for fast read validation.

Finally, a transaction (after validating its read set for the last
time) commits by atomically changing its status to “Committed”.
This locks all the orecs it owns for writing, making the write own-
ership irrevocable until it is released (which is after the transaction
finishes copying the values from its write set to the memory loca-
tions it wrote). Once a transaction commits, it becomes blocking
(i.e., all concurrent transactions attempting to access the locations

4 Several locations are associated with each orec, introducing false conflicts
but not affecting correctness.

that are write owned by the committed transaction must wait for it
to release ownership of those locations). A transaction never blocks
other transactions while it is executing user code.

2.2 TL2 and its variants

The need to validate reads makes it difficult to make transactional
memory systems efficient and scalable. Whenever a transaction
reads some memory location, it must ensure that the value it gets
back is consistent with the values it has previously read. This is
particularly important in unmanaged languages likeC++, because
using inconsistent reads can lead to arbitrary program behavior. A
näıve validation algorithm that iterates over the entire read set on
every validation incurs overhead that is quadratic in the number of
reads over the whole transaction. This overhead dominates the cost
of the transaction as its size increases.

Like SkySTM, TL2 [7] associates an orec with each memory
location. TL2 uses a global shared counter to generate timestamps
for committed transactions. Transactions are serialized in the order
of their (unique) timestamps. When a transaction commits, it stores
its timestamp in the orec of each location that it writes. Thus,
a transaction can quickly check that a location has not changed
since it began by recording the global counter when it begins, and
comparing that value to the timestamp in the orec.

The open-source TL2 library [30] contains several variants on
the basic algorithm described in [7], which differ in how they man-
age the global counter. As originally described, TL2 increments the
counter every time a transaction that writes a location commits, and
uses the resulting value as its timestamp. Thus, every such transac-
tion has a unique timestamp. This induces contention on the global
counter, even when transactions do not conflict with each other. In
its default mode, called GV4, TL2 mitigates this problem by us-
ing a pass-on-failurestrategy: if a transaction fails to increment
the counter, it does not retry the increment, but instead uses the
new value of the counter as its timestamp. This is safe because the
counter is always incremented after the transaction has locked all
the orecs associated with its writes, and validated its reads; hence
transactions that contend on incrementing the counter do not con-
flict with each other, and can therefore commit “at the same time”,
using the same timestamp. This optimization significantly reduces
the cost of the contention as long as the cost of shared memory
access is low, because each writer-transaction tries to increment
the counter exactly once, whether it succeeds or fails. However, as
we later show, as the cost of shared memory access increases, this
mechanism’s scalability breaks down.

An alternate scheme, called GV5, further reduces contention for
the global counter by not requiring every transaction evenattempt
to increment it. Instead, when a transaction commits, it reads the
global counter and increments it locally, using the resulting value
as its timestamp but not writing the incremented value back to the
global counter. Thus, unlike in GV4, orecs may have timestamps
that are greater than the value in the global counter. If a transaction
accesses such an orec, then it aborts and ensures that the global
counter’s value is at least as large as the timestamp in the orec
before retrying. Although GV5 reduces contention on the global
counter, it introduces unnecessary aborts. In particular, if a single
thread repeatedly accesses the same location in successive transac-
tions, every second transaction will fail even if there are no other
threads running.

GV6, the variant that seems to perform the best, combines the
two schemes described above: A transaction uses the GV4 scheme
with probability 1/32, and the GV5 scheme the rest of the time.
This approach aims to avoid unnecessary aborts by advancing the
counter, but avoids a bottleneck on the counter by incrementing it
less frequently than GV4.

2.3 Other recent STMs with centralized mechanisms

RSTM [19] uses a globalcommitting counterthat is incremented
every time a writer transaction commits, and transactions do full
read set validation only when the global counter changes [28].

RingSTM [29] reduces the cost of validation by keeping an
ordered ring with a record for each transaction that has committed,
but may not have finished copying the values from its write set
to shared memory. Again, the ring is a centralized structure that
is modified by every transaction, and thus is likely to prevent
RingSTM from scaling up to systems with many threads.

Other timestamp-based STMs have focused on reducing con-
tention on the centralized timestamp using hardware support for dis-
tributed synchronized hardware clocks [23] or techniques to reduce
transaction aborts due to false conflicts [10]. These STMs have only
been demonstrated to scale to 16 or fewer threads, and they do not
guarantee correct privatization.

2.4 Adding privatization to TL2

As mentioned above, TL2 does not provide privatization. TheOrd
algorithm due to Detlefs et al. (described in [20]) does provide
privatization in a TL2-like STM.

Marathe et al. [27, 20] identify two kinds of undesirable be-
havior exhibited by many early STMs with respect to privatization:
“delayed cleanup” and “doomed transactions”.Delayed cleanupoc-
curs when a transaction that is finishing its cleanup (either copying
back values to memory during commit in a deferred-writes STM,
or rolling back changes upon abort in an in-place STM) interferes
with a thread that has already privatized the affected memory. The
doomed transactionproblem occurs when a transaction reads from
memory that has already been privatized and is being updated non-
transactionally; the STM fails to detect the conflict with the non-
transactional accesses, and therefore delivers inconsistent data to
the application, which can result in arbitrary incorrect behavior.

The delayed cleanup problem can manifest in TL2 if the serial-
ization and completion (returning from the commit operation) or-
der of transactions are inverted. To avoid this inversion, Ord uses
a ticket-lock like algorithm to enforce consistent serialization and
completion orders. Essentially, each transaction grabs a ticket at the
beginning of its commit operation (after acquiring write ownership
of locations in its write set), completes its validation and cleanup,
and then waits for its “turn” to return from the commit operation.

The doomed transaction problem can also arise in TL2 because
when a transaction reads a location, it checks only that this location
has not been written transactionally since the transaction began; it
does not ensure that other locations previously read still contain the
values read. Thus, the transaction may read a buffer that another
transaction privatized by writing such a location, and not detect the
conflict until it attempts to commit. If the transaction is a read-only
transaction, it might even successfully commit with the inconsis-
tent view of the memory. To avoid the problem, Ord requires every
transaction to revalidate its entire read set every time any transac-
tion commits. Information about new commits is relayed via the
global counter in TL2. Since the counter in GV5 (and hence in
GV6) does not reliably indicate whether a transaction committed
recently, Ord cannot exploit the benefits of these algorithms.

3. Scalable and Efficient Transactional Reads
3.1 Fast read validation

SkySTM uses a new variant of theRWConflictCounter algo-
rithm [16, 5] to provide fast read validation. This algorithm exploits
the fact that we have semivisible reads by incrementing a global
counterRWConflictCounter only when a writing transaction
that has conflicted with a readercommits, rather than every time
anywriting transaction commits. We need not perform a full read-

set validation ifRWConflictCounter has not changed since the
last time the read set was known to be valid. Instead, a transaction
readsRWConflictCounter when it begins, and uses the value
read for fast read validation after every read operation. If the trans-
action detects thatRWConflictCounter has changed, it does
a full read validation, replacing its local version with the newRW-
ConflictCounter value if the full validation succeeds. This is
safe because the read set is known to be valid as of a point in time
after the new value was obtained.

To facilitate incrementingRWConflictCounter appropri-
ately, we add a one-bit fieldrwc to each orec. This bit is set when-
ever a transaction acquires write ownership of an orec that was
owned by at least one reader (i.e., the transaction “steals” the orec
from the readers). If the transaction later commits, therwc bit tells
it that it must incrementRWConflictCounter, as explained be-
low. This information is stored in the orec—and not just recorded
privately by the stealing transaction—so that if the orec is stolen
again, the need to incrementRWConflictCounter is not lost.

At commit time, if a transaction owns for writing an orec that
has itsrwc bit set, it incrementsRWConflictCounter. This in-
crement must be performed at or before the final read validation of a
successful transaction (which precedes any copying of values from
the write set back to shared memory). We first try to validate the
read set and incrementRWConflictCounter together by call-
ing FetchAndInc on RWConflictCounter and comparing
the value returned to the local version mentioned above. IfRWCon-
flictCounter has changed, we run a full read validation, know-
ing that if it succeeds,RWConflictCounter has already been
incremented. A transaction that incrementsRWConflictCount-
er clears therwc bit of an orec it owns for writing when it releases
the write ownership of that orecs.

We can improve the scalability of this approach by using a
pass-on-failurestrategy like the one used in TL2: a thread fails
to incrementRWConflictCounter only if some other thread
did so successfully at the same time, and our strategy is correct
as long asRWConflictCounter has been incremented at least
once since the transaction last stole any orec and before it commits.
Therefore, the contention on the centralRWConflictCounter
will never exceed the contention on the TL2 central counter, and
will match it only if all writing transactions conflict with other
transactions, in which case the application is unlikely to scale well
regardless of the STM implementation.

Fast read validation withRWConflictCounter also guaran-
tees that all read values are consistent at some pointduring the
validation operation, in contrast to TL2’s mechanism, which only
guarantees that they were current at the beginning of the transac-
tion. This is why SkySTM is immune to the doomed transaction
problem while TL2 is not (see Sections 2.4 and 5.5).

Integration with Hardware Transactions: As described so far,
aborted transactions and transactions that do not own for writing
any orec whoserwc bit is set neither updateRWConflictCount-
er nor clear therwc bit of orecs whose ownership they release.
However, in a system that allows software and hardware transac-
tions to coexist, an unowned orec whoserwc bit is set is prob-
lematic: a hardware transaction that writes to a location mapping
to such an orec must either incrementRWConflictCounter or
abort itself. Both these options are unacceptable: the former would
add significant overhead to hardware execution and the latter would
reduce the number of transactions that can succeed in hardware.

We instead address the issue in two ways:

1. An aborted transaction behaves like a committing transaction
in that it updatesRWConflictCounter if any member of its
write set has itsrwc bit set and clears therwc bit of any orec
for which it successfully releases write ownership.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1 16 32 48 64 96 128 192 256

T
hr

ou
gh

pu
t (

O
ps

/m
s)

Number of threads

SkySTM
TL2-GV4
TL2-GV6
OneLock

Figure 1. HashTable withkeyrange= 128,000, 50% insertions,
50% deletions.

2. The last transaction to releasereadownership of an orec whose
rwc bit is set also clears the bit after incrementingRWCon-
flictCounter.

These measures causeRWConflictCounter to change more of-
ten, inducing more full validations, than necessary for correctness.
But that slight additional cost increases the number of transactions
that can run in hardware without introducing unnecessary overhead
for hardware execution.

3.2 Evaluation

All experiments presented in this paper were run on a 1.4 GHz
Sun SPARC EnterpriseR© T5440 server [11], which combines
chip-level multithreading (CMT) and symmetric multiprocessing
(SMP) design aspects. The T5440 contains four UltraSPARCR© T2
Plus processors connected via four UltraSPARC T2 Plus XBR co-
herency hubs. Each T2 Plus processor contains a single 4 MB L2
cache shared by eight cores, each of which supports 8 hardware
threads, for a total of 64 hardware threads per chip. Thus, while the
machine supports up to 256 hardware threads, inter-thread commu-
nication overhead increases significantly when running more than
64 threads, as then not all threads share the same L2 cache.

In this section, we show that a centralized synchronization
mechanism, such as the timestamp variable used by the TL2 STM,
may severely impede scalability, even in the absence of application
contention. We use a simple HashTable benchmark, which stores
keys in 131,072 (217) buckets, with chaining. Insert and delete op-
erations do not modify the table if the target key is found or not
found respectively. Each thread executes insert and remove oper-
ations with equal probability (50%) with keys chosen uniformly
at random from the range of 0 to 127,999. The table is initialized
with 64,000 random keys in this range, so that the probability for
an insert or remove operation to succeed remains roughly the same
(50%) throughout the run (the table always contains approximately
half of the keys in the range). The benchmark provides a high de-
gree of parallelism, and thus should scale well.

Figure 1 shows the throughput of the HashTable benchmark
when running with: TL2-GV4, TL2-GV6, SkySTM using semivisi-
ble reads and the centralizedRWConflictCounter mechanism,
and a single lock. SkySTM scales almost linearly up to 256 threads,
while TL2-GV4 scales only while all threads are on the same chip
(i.e., up to 64 threads); beyond this point, throughput decreases.
Thus, although SkySTM runs 1.39 times slower than TL2-GV4 on
a single-thread run, its throughput is 4.94 times higher with 256
threads. On the other hand, the GV6 variant of TL2 outperforms all

other solutions, as it reduces the contention on the centralized vari-
able without the overhead of semivisible reads. Unfortunately, we
are not aware of any way to provide privatization with the GV6 vari-
ant of TL2, or avoid the additional overhead for concurrent hard-
ware transactions that is imposed by TL2’s invisible reads.

Note that despite TL2’s centralized timestamp variable, TL2-
GV4 scales very well when its communication remains on-chip.
The combination of a shared L2 cache and TL2’s pass-on-failure
strategy reduces contention on the timestamp sufficiently to allow
good scalability. However, with more than 64 threads, the added
cost of off-chip L2 cache misses, caused by the timestamp variable
bouncing between the four chips, produces significant performance
degradation.

When we modify the benchmark to increase contention, the
performance of the TL2-GV4 variants doesn’t change much, but
SkySTM performance suffers considerable degradation, to the
point where SkySTM’s performance only beats that of TL2-GV4
by 13% at 256 threads. This degradation is caused at least in part
by SkySTM’s poor contention management. Addressing that issue
is ongoing work.

4. Scalable Read-Sharing
In applications with high levels of read sharing, semivisible reads
can introduce significant contention even when there is no conflict
inherent to the application. For example, the root of a binary tree is
read by every operation on the tree, but typically is rarely written. In
this case, the root should not be a significant source of contention.
However, with the naive implementation of semivisible reads de-
scribed in Section 2.1, which uses a simple read counter in each
orec, every operation modifies the read counter twice. Thus, the
read counter is highly contended. For SkySTM to scale for such
applications, we must reduce the contention on the read counter.

The key observation for reducing contention on the read counter
is that the exact value of the counter is not important: it matters only
whether the count is zero or nonzero. Therefore, two transactions
that want to acquire read ownership of an orec need not contend
if the orec is already owned for reading by some other transaction;
the read counter is already nonzero and additional read acquisitions
will not make it zero. Similarly, a transaction releasing read owner-
ship will not make the read counter zero unless it is the only reader.
This observation led to the development of ascalable nonzero in-
dicator (SNZI) [9], which supportsarrive and depart operations
that respectively increment and decrement an abstract counter, and
aqueryoperation that determines whether the counter is nonzero.

To implement SNZI, we use a rooted tree of SNZI objects in
which a child is implemented using its parent (i.e., an operation
on a child may invoke operations on its parent). A reader may
invoke an arrive operation at any node; it invokes the corresponding
depart operation on the same node. An arrive operation on a node
other than the root invokes an arrive operation on its parent if it
may change the child’s abstract counter from 0 to 1, and a depart
operation on the child invokes a depart operation on the parent if it
changes the child’s abstract counter from 1 to 0. Query operations
occur directly on the SNZI root node, whose abstract counter is
nonzero if and only if the abstract counter of any node in the
SNZI tree is nonzero. Thus, a child acts as a filter for its parent,
and the tree structure greatly reduces contention for the root node.
Although the root is frequently accessed, it is rarely written, so we
can use a nonscalable algorithm (e.g., a simple counter) at the root
without jeopardizing the scalability of the solution as a whole.

The basic SNZI object does not suffice for read indicators: a
transaction wanting to write a location may “steal” the associated
orec from transactions that own it for reading. In that case, the
read counter is reset to 0. This motivated the development of the
SNZI-R (“snazzier”) variant [9], which supports aresetoperation.

Although subsequent readers that arrive and depart (after the writ-
ing transaction commits or aborts) increment and decrement the
abstract counter normally, readers whose ownership was revoked
when the orec was stolen mustnot decrement the abstract counter:
their contribution to the read counter was already removed by the
reset operation. Often, a reader does not attempt to depart because
it recognizes that its ownership has been revoked. However, the at-
tempt cannot always be avoided: the reader might be just about to
release ownership of the orec (i.e., depart) when the orec is stolen.
Therefore, we must distinguish departs by readers whose ownership
has been revoked from those that still own the orec for reading.

To achieve this, a SNZI-R object maintains anepoch, which is
returned by the query operation (together with whether the abstract
counter is nonzero). To arrive, a reader uses the query operation
to determine the current epoch, and tries to arrive in that epoch.
To depart, it uses the epoch to which it previously arrived. A reset
operation replaces the current epoch with a new one (epochs must
not be reused). The abstract counter is modified only by arrive and
depart operations of the current epoch. Thus, if the current epochis
changed (by a reset operation) between the time a reader arrives and
the time it departs, the reader’s depart operation will have no effect
on the abstract counter. In SkySTM, a reset operation coincides
with a write acquisition of an orec, and the epoch is the id of the
transaction that last acquired it for writing.

Since the publication of [9], we developed a new version of
the hierarchical SNZI algorithm that is significantly simpler and
slightly more efficient. Pseudocode for the new SNZI-R arrive and
depart operations5 is presented in Figure 2. The key difference
between this new algorithm and the original one is that in the new
algorithm, when the counter is zero, wefirst arrive at the parent
and only then try to increment the child’s counter from zero to one.
Changing the order in which we arrive at the parent and modify
the child’s counter eliminates the need for the intermediate1

2 value
and the version number used in the original SNZI algorithm [9],
and significantly simplifies the correctness proof.

4.1 SNZI in SkySTM

SkySTM uses the new SNZI-R algorithm for implementing the
read indicator in an orec. A small counter, denoted as theSNZI
counter, is used in the orec to implement a root SNZI object;
an arrive or depart operation on that object simply increments or
decrements the orec’s SNZI counter, conditional on the epoch of
the arrive or depart operation being the current epoch (recall that the
current epoch is the id of the transaction that most recently owned
the orec for writing, which is also maintained in the orec).

The SNZI-R tree structure has three layers: the orec, a single
child node of the orec and several “grandchild” leaf nodes. Each
thread is assigned a leaf; it always arrives and departs at this leaf.
Threads are scattered randomly among the leaves so that each leaf
is assigned to at most eight threads. We are exploring various
tree structures and assignment schemes to better adapt to different
performance characteristics over a range of machine architectures.

It can be shown that because the orec’s SNZI counter is incre-
mented only by a single child node, and only when this node’s ab-
stract counter may change from 0 to 1, the orec’s SNZI counter is
at most 1 when no arrive operation is executing. Thus, we found
that allocating a few bits in the orec for this counter is sufficient to
avoid overflow; in the unusual case that the counter does get satu-
rated, we use a back off and retry strategy. (In [9], we introduced a
special algorithm for the root node that used only a single bit in the

5 As in [9], for simplicity of presentation, the pseudocode shows an arrive
operation that requires epochs to be totally ordered. In SkySTM, we use a
slightly modified variant that works with unordered epochs.

X = (ctr,epoch): (N,N), initially (0,0)
parent: SNZI-R

Arrive(e)
pArr← false
repeat

x← Read(X)
if x.epoch> e then return
if x.ctr = 0 ∨ x.epoch< e then

x′← (1,e)
if ¬pArr then

parent.Arrive(e)
pArr← true

else
x′← (x.ctr+1,e)

until CAS(X,x,x′)
if pArr ∧ x′.ctr 6= 1 then

parent.Depart(e)
return

Depart(e)
repeat

x← Read(X)
if x.epoch6= e then return

until CAS(X,x,(x.ctr−1,e))
if x.ctr = 1 then

parent.Depart(e)

Figure 2. Code for new SNZI-R Arrive and Depart operations

orec for the indicator, but we did not find it necessary in practice
for SkySTM.)

Although the SNZI-R algorithm greatly improves the scalabil-
ity of read indicators, it entails nontrivial overhead compared to the
simple counter. Therefore, SkySTM uses the SuperSNZI-R strat-
egy [9], which incorporates a small additionalread counterfield in
the orec, to be used when the contention is low. To arrive at the read
indicator of an orec, a transaction checks whether the orec’s SNZI
counter is zero, and if so, tries to arrive by simply incrementing
the read counter. After several failed attempts to do so, the transac-
tion resorts to arriving using the SNZI-R tree associated with the
orec. Thus, the more costly SNZI-R algorithm is used only when
the SNZI counter is already nonzero (indicating that the orec’s read
indicator is already contended), or when contention on the read
counter is encountered. In addition to significantly improving per-
formance, using SuperSNZI-R allows SkySTM to allocate SNZI-R
trees only for contended orecs, thus significantly reducing the space
overhead of the solution.

Note that with the arrive operation presented in Figure 2, all
threads that read a node’s counter as 0 arrive at the node’s parent,
and then all but one of them (the one that successfully changes the
node’s counter from 0 to 1) cancel their arrival at the parent by
departing from it before returning from their arrive operation. To
reduce contention on the parent due to such superfluous arrivals,
SkySTM uses a simple extension to the SNZI algorithm in which
a thread announces, by writing to anAnnounce flag using a
regular write operation, that it is about to arrive at the parent; other
threads that observe this flag as set delay their arrival at the parent,
avoiding it completely if the node’s counter is modified while they
are delaying. While this simple extension does notguaranteethat
it will reduce the number of superfluous arrivals at the parent, it
works well in practice, significantly reducing the number of arrive
and depart operations invoked on the parent.

 0

 5000

 10000

 15000

 20000

 25000

 1 16 32 48 64 96 128 192 256

T
hr

ou
gh

pu
t (

O
ps

/m
s)

Number of threads

SkySTM
OneLock

SkySTM-NoSNZI

Figure 3. HashTable with a high level of read sharing:keyrange=
128,000, 50% insertions, 50% deletions.

4.2 Evaluation

In this section, we demonstrate how SNZI improves performance
under heavy read sharing when using semivisible reads. To this end,
we introduce a level of indirection to the HashTable benchmark: in
this variant, the table of buckets is accessed via a shared pointer
that has to be read (by all threads) at the beginning of each opera-
tion (such as might be used by a resizable hash table). We compare
SkySTM with a version that uses simple counters for its read indi-
cators (that is, with SNZI disabled). Figure 3 presents the results.

SkySTM scales reasonably well up to 256 threads despite heavy
read sharing on the shared HashTable pointer. In contrast, the ver-
sion of SkySTM with SNZI disabled starts scaling worse than
SkySTM with as few as 16 threads, and when the number of threads
exceeds 64, so that multiple chips are in use, throughput degrades
with additional threads. By 96 threads, SkySTM with SNZI dis-
abled performs worse than the single global lock.

While SNZI greatly improves the scalability, it does not come
for free: with more than 8 threads, the throughput of the HashTable
variant without the indirection is 36% higher than that of the vari-
ant with the indirection. The level of indirection introduces some
additional cost, but in similar experiments with TL2, it caused only
a 12% degradation, suggesting that SkySTM’s degradation is pri-
marily due to SNZI overhead, not the extra level of indirection.

5. Scalable Privatization
Like most STMs, SkySTM does not supportstrong atomicity, and
therefore forbids concurrent accesses by nontransactional and trans-
actional accesses to the same data. If this rule is violated, the atom-
icity guarantee of transactional memory may be compromised, for
example by allowing a transaction to see inconsistent data or other
threads to see internal states of a transaction.

However, it is desirable to allow nontransactional access to data
that might have beenpreviouslyaccessed transactionally for at least
two reasons. First, processing the data may require the use of library
functions that have not been instrumented for use within transac-
tions. It is not always possible to recompile such functions—the
source code may not be available, for example. Second, the instru-
mentation necessary to run within transactions imposes significant
overhead, so isolating data (using a transaction) and processing it
nontransactionally can significantly improve overall performance.

As discussed in Section 1, we prefer to address the privatization
problem implicitly, without requiring explicit annotations by the
programmer. Previous implicit privatization mechanisms [24, 20]

depend on centralized metadata that is modified frequently, and
hence severely degrade scalability.

In Section 2.4 we mentioned two privatization related problems,
one due to delayed cleanup, and one due to doomed transactions.
As explained in Section 5.5, SkySTM (unlike TL2) is immune to
the doomed transaction problem. Below we explain how to address
the delayed cleanup problem in a scalable way. For clarity, our
description focuses on the followingprivatization guarantee:

If a transaction “isolates” a chunk of memory so that no
other thread should be able to access it (e.g., by setting
all shared references to that memory chunk toNULL), then
once the isolating transaction completes its commit phase,
no further writes to that memory chunk are executed by
other threads.

This guarantee ensures that standard privatization idioms work as
expected. In particular, a thread can “isolate” a memory buffer
by using a transaction to remove it from the shared (transac-
tional) space, and then subsequently access such privatized memory
buffers safely without transactions. As discussed in Section 5.5, the
privatization algorithms considered in this paper actually provide a
stronger guarantee that enablesproxy privatization, in which one
thread privatizes a chunk of memory on behalf of another.

Unlike previous privatization mechanisms, our new scalable one
is conflict-based: nonconflicting transactions do not wait for each
other. It does not use any centralized metadata, and hence does not
affect the scalability of conflict-free programs.

Although we describe our mechanism for avoiding the delayed
cleanup problem in the context of SkySTM, which uses deferred
writes, it can be applied to other STMs including TL2 and STMs
that use in-place writes, and it works in a hybrid environment with
hardware and software transactions running concurrently.

5.1 The basic solution

Our implicit privatization algorithm relies on the following simple
observation:

A transaction that isolates a buffer must conflict with any
other transaction that concurrently accesses that buffer.

In particular, a privatizing transaction must write some shared data
to indicate that the buffer is no longer shared—data that must be
read by any transaction that may access the buffer. For example,
a buffer that is accessible only through a single global pointer
can be isolated by setting that pointer toNULL. In this case, the
global pointer is the shared data involved in the conflict—it is
written by the privatizing transaction and is read by all transactions
accessing the buffer. Thus, a privatizing transaction need wait only
for transactions that have read some location that it wrote.

With an STM that uses deferred writes, no values are copied
back into shared memory by a writing transaction until after it has
executed its final read validation. Thus, a conflicting transaction
that has not yet begun its final read validation cannot interfere with
a privatizing transaction that has already committed because it will
fail that validation and abort. Thus, a privatizing transaction need
wait only for conflicting transactions that have begun their final
read validations but not yet finished copying their write sets back
to memory.

To enable waiting for these transactions, we add acommitting
indicator (CI) field to each orec. This field indicates whether any
transaction that earlier had read ownership of that orec has already
executed its final read validation of that orec, but has not yet
completed its copyback. Like the read indicator, the committing
indicator can be implemented by a simple counter—such a counter
would be incremented together with the final read validation of the
orec, and decremented after the commit operation has copied back

all values from its write set to shared memory. In this case, the CI
of an orec associated with a memory location read by a transaction
is nonzero from the last time the transaction read-validates that
orec until the transaction is done copying back the values from its
write set to shared memory. Therefore, a privatizing transaction can
provide the privatization guarantee by simply delaying the return
from its commit operation until the CI of each orec it owns for
writing is zero. Then any transaction that owned any of these orecs
for reading has either finished its copyback phase, or will still
read-validate that orec before committing (and the read validation
will fail, causing the transaction to abort). In either case, once a
transaction sees the CI of each orec in its write set as zero, no
further writes to a buffer it has isolated can occur.

The following summarizes the steps taken by the new commit
operation that provides implicit privatization:

1. (If in lazy acquire mode) acquire write ownership of all orecs
in the write set in the usual manner (ignoring the CI fields).

2. For each orec in the read set that is not in the write set, atomi-
cally read-validate it, release read ownership (if necessary), and
increment its CI. If validation fails, undo any prior increments
of CIs, and abort (releasing the orecs owned for writing)

3. Change status from Active to Committed; if this fails, decre-
ment CIs incremented in Step 2 and release each orec owned
for writing.

4. Copy values from the write set back to shared memory.

5. Decrement the CIs incremented in Step 2.

6. For each orec owned for writing, wait until its CI is zero.

7. For each orec owned for writing, release write ownership.

The substeps of Steps 4 through 7 need not be executed in the
order shown. However, some constraints are necessary: First, each
substep of Step 4 must occur while the transaction has write own-
ership of the appropriate orec (i.e., between the corresponding sub-
steps of Steps 1 and 7). Second, all substeps of Step 4 must oc-
cur before any substep of Step 5. Otherwise, the transaction might
allow a privatizing transaction to complete before this transaction
completes its copybacks. Third, each substep of Step 6 must occur
after the corresponding orec has been acquired for writing in Step
1 (or earlier, in an eager-acquire STM). Otherwise, another trans-
action may increment the CI and proceed to its copyback phase
after this transaction found the CI to be zero. Checking the CI after
write ownership has been acquired prevents this because the other
transaction will fail to read-validate the orec when it attempts to
increment CI. Fourth, each substep of Step 6 must occur before the
corresponding substep of Step 7 for the same orec. Otherwise, this
transaction may be starved by a series of transactions that read the
value after this transaction wrote it and keep the CI nonzero as they
increment and decrement it. Finally, to achieve the proxy privatiza-
tion property discussed in Section 5.5, Step 6 mustentirelyprecede
Step 7. This prevents another transaction from reading a location
written by a privatizing transaction before the privatizing transac-
tion has done all waiting needed to ensure the buffer is privatized.

Despite these constraints, there are many options for ordering
the substeps in this algorithm. Several considerations apply. First,
the main point of the CIs is to reduce the amount of time a priva-
tizing transaction must wait for a conflicting reader. This suggests
decrementing CIs as soon as it is safe to do so, as shown above.
Similarly, delaying waiting steps allows more time for the waited-
for condition to become true, while other useful work continues to
be performed. This suggests waiting for CIs to become zero as late
as possible.

On the other hand, some loops may be combined, which may im-
prove single-threaded performance at the cost of slightlyincreased

CI hold times. In our implementation, we combine the substeps of
Steps 4 and 6 into a single loop, which iterates over orecs in the
write set, for each one performing copybacks for locations covered
by the orec, and then waiting for the CI to become zero. We also
perform Step 5 after Step 7, because the sooner a transaction re-
leases an orec, the sooner another can acquire it. We have not yet
experimented extensively with alternative orderings.

5.2 CI optimizations

Various enhancements to the basic algorithm can reduce the cost of
updating the CIs.

No overhead for read-only transactions:Since a transaction must
wait only for conflicting readers that might write to a buffer it has
isolated, it need not wait for read-only transactions. Therefore, a
read-only transaction can completely avoid the overhead of updat-
ing CIs. Also, a read-only transaction never waits for any CI to
become zero since it does not have write ownership of any orec.
Hence, our privatization scheme imposes no overhead on read-only
transactions.

Scalable committing indicators: Like read indicators, scalable
and efficient committing indicators can be implemented using Su-
perSNZI [9] (see Section 4). When using such CIs, however, it may
not always be possible to atomically validate the orec and update
the corresponding CI, as described in Step 2 of the commit opera-
tion.6 If so, it is important to perform the update of the correspond-
ing CI before the orec is read-validated. Otherwise, there would
be a window between the time the orec is read-validated and the
time the CI is updated, in which an isolating transaction may ac-
quire write ownership of the orec and commit successfully, without
waiting for the reader to finish its updates to the isolated buffer,
and without causing that reader to abort (as the reader has already
validated the orec). Updating the CI before validating the orec guar-
antees that a writer will always wait for all conflicting readers that
might still be copying values back to memory.

5.3 Interaction with hardware transactions

Our privatization algorithm is designed for the SkySTM runtime,
which enables hardware and software transactions to run concur-
rently. SkySTM guarantees that hardware and software transactions
do not violate one another’s atomicity by having a hardware transac-
tion read STM metadata to detect any conflicts with software trans-
actions. If a conflict is detected, the hardware transaction aborts it-
self. Otherwise, because the metadata is checked as part of the hard-
ware transaction, the transaction can commit only if the metadata
does not change before the hardware transaction commits. Thus,
when a hardware transaction does commit successfully, it is guar-
anteed that there is no conflict with any software transaction.

Hardware transactions cannot violate the privatization guaran-
tee by writing to a buffer isolated by asoftwaretransaction, be-
cause the software transaction causes any hardware transaction that
may access the isolated buffer to abort when the buffer is isolated.
Therefore, to provide the privatization guarantee when hardware
transactions are involved, the only additional guarantee we need is
that if ahardwaretransaction isolates a buffer, that buffer will not
later be written by a software transaction. Unfortunately, we cannot
use the same solution that is used by software transactions (waiting
for CIs to be zero), because once a hardware transaction observesa
nonzero CI, it will be aborted when the CI changes. Therefore, for
hardware transactions, we simply abort the hardware transaction if
it needs to write to a location whose corresponding CI is nonzero
(this additional test adds no overhead because the orec for each lo-
cation to which the transaction writes is checked in any case).

6 For example, for an STM with invisible reads, performance is likely to
dictate that the CI should not be colocated with the rest of the orec.

5.4 Using our solution with in-place writes

With an STM that uses in-place writes, it is not true that transactions
can only write to an isolated buffer after they have committed
successfully. It is still true, however, that such a transaction must
have read something written by the isolating transaction, and hence
that the writing transaction is no longer valid once the isolating
transaction has committed successfully. Therefore, we can provide
the privatization guarantee as follows:

• A transaction increments the appropriate CI immediately after
the read operation, and decrements it after it has executed all
writes to shared data (including writes whose purpose is to undo
the writes done by an aborted transaction).

• Similar to the solution for an STM with deferred writes, once
it commits successfully, a transaction waits until the CIs corre-
sponding to its write operations become zero.

Doing this guarantees that a successfully committed isolating trans-
action waits until all transactions that have read memory that
the isolating transaction has subsequently written (and are thus
doomed) find out that they are aborted and finish undoing all their
write operations, hence providing the privatization guarantee.

The optimization for read-only transactions can also be applied
to this variant, by deferring increments to the CIs until the first write
operation by the transaction is executed.

This variant is unlikely to scale as well as the deferred-writes
variant, as a transaction must wait until all transactions with which
it has a write-read conflict validate their read sets, find out that they
are aborted, and undo their writes. In particular, the solution for
in-place writes may entail waiting for arbitrary user code to finish
executing before the next read-validation is executed. On the other
hand, this solution will probably still scale better than a solution
based on quiescence [14], which waits forall running transactions
to read-validate, and requires reading their snapshots of a global
counter, entailing significant coherence traffic [32].

5.5 Stronger privatization guarantees

By using the privatization mechanism as presented so far, and by
read-validating after every transactional read, SkySTM avoids both
kinds of privatization problems identified in [20], namely delayed
cleanup and doomed transactions. Nonetheless, in some cases, it
may be desirable to provide a stronger privatization guarantee so
that transactions do not perform evenreadsfrom an isolated buffer
after the isolating transaction commits. This guarantee is not pro-
vided by our solution: it does not wait for all conflicting aborted
transactions to finish, and hence these transactions may read the
buffer after they are aborted. Such a transaction is guaranteed to
abort before returning to user code, so there is no risk of return-
ing inconsistent data. However, once a thread has isolated a buffer,
it may deallocate its memory. Subsequently, the operating system
may deallocate the page containing that memory, so accessing it,
even just by reading it, could cause the program to crash.

One approach to providing this stronger guarantee is to use a
transaction-aware memory management system [14], which can
then employ explicit privatization barriers [27]. Such a solution
is acceptable if allocation/deallocation is relatively infrequent. A
simpler approach for some environments is to use nonfaulting loads
to guarantee that reading from a buffer that was freed will not cause
a runtime error.

Avoiding transactional reads of privatized buffers also avoids
the doomed transaction problem in TL2, which is susceptible to this
problem because fast read validation in TL2 guarantees only that
the location being read-validated has not been written by another
transaction since the reading transaction began. Thus, if one trans-
action reads a location to determine that a particular memory buffer

is not private, and another transaction subsequently privatizes that
buffer, writing the location read by the first transaction, and then
writes that buffer nontransactionally, then the first transaction (now
doomed) might read the newly privatized buffer without detecting
the conflict. The Ord variant [20] avoids such inconsistent reads
of privatized buffers by requiring a transaction to revalidate its en-
tire read set whenever the global version number changes. SkySTM
does not have this problem because its read validation guarantees
that all values read are valid and mutually consistent at some point
during the read validation. As reads from a privatized buffer are
performed only by doomed transactions, the read validation opera-
tion that follows the first read from the isolated buffer will detect
that the transaction is doomed, and abort it.

Proxy privatization For ease of exposition, the descriptions above
focus on the case in which a thread uses a transaction to privatize
a memory buffer and then accesses the buffer nontransactionally
after the transaction completes. However, privatization need not
be so direct—one thread might use a transaction to privatize a
buffer for another. We call this scenarioproxy privatization. In this
case, a stronger guarantee is needed: latent writes to the privatized
buffer must be prevented even before the privatizing transaction
completes its commit, because the other thread may access the
buffer before then. Our algorithm and (our implementation of) Ord
both guarantee that this idiom works correctly.

It remains to be seen exactly how ongoing efforts to precisely de-
fine language semantics for use with transactions will address the
privatization problem. However, it seems clear that useful language
semantics for contexts in which nontransactional memory accesses
to previously transactional data are desirable or unavoidable must
outlaw the undesirable behaviors that comprise the privatization
problem. We therefore believe that the scalable privatization guar-
antee made by SkySTM—and the mechanisms we have introduced
to achieve it—are likely to be useful in implementing whatever lan-
guage semantics are eventually specified.

5.6 Evaluation

In this section we examine the cost of supporting privatization by
comparing the performance of SkySTM to a variant with priva-
tization disabled, as well as comparing TL2 to the privatization-
enabled Ord variant [20]. Figure 4 presents the throughput of
the HashTable benchmark (regular version, no indirection).7 For
SkySTM, both versions scale similarly, with the privatization so-
lution paying a relative overhead of around 4% across the board.
This demonstrates one of the most important advantages of our
algorithm: when the application scales, so does our privatization
algorithm. In contrast, the Ord algorithm pays dearly for privati-
zation, scaling substantially worse than TL2-GV4. As explained
earlier, the modifications to TL2-GV4 to achieve the privatization-
safe Ord algorithm cannot be applied to TL2-GV6.

We do not claim that our privatization algorithm is almost free,
only that its cost is small when contention is low. As contention
rises, our privatization solution will likely require more transactions
to wait for each other, and hence its overhead is likely to increase.

To evaluate our solution with different levels of contention, we
measured the privatization overhead with a red-black tree bench-
mark, using different key ranges (and tree sizes) to control con-
tention levels. In all experiments, the tree is initialized with half
the keys of the tested range, and in each iteration a thread chooses
whether to insert, delete, or lookup a random key with distribution

7 This benchmark has little contention and no memory is actually privatized.
We are looking at the cost of enabling an application to privatize memory.
Privatizing memory has no cost itself other than the cost of theconflicts it
may introduce.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 16 32 48 64 96 128 192 256

T
hr

ou
gh

pu
t (

O
ps

/m
s)

Number of threads

SkySTM
SkySTM-Priv

TL2-GV4
TL2-Ord

Figure 4. Performance cost of enabling privatization.
HashTable,keyrange= 128,000, 50% insertions, 50% deletions.

2:2:6. The results of these experiments (that we omit due to lack of
space) show that the privatizationoverheadof our solution strongly
depends on the level of contention. With all tree sizes, the run-time
overhead of our privatization solution in the single-thread run was
approximately 3.6%. With 256 threads, this overhead increases to
11.8% with a 128,000 key range, and to 35% with a smaller 1,600
key range. On the other hand, the overhead of the Ord algorithm
(comparing to the TL2-GV4 variant) is over 1000% in the 256-
thread run withboththe 1,600 and 128,000 key ranges.

6. Concluding remarks
We have presented SkySTM, the first STM system that can scale
to hundreds of threads across multiple multicore chips. The key to
achieving scalability is a focus on conflict-based synchronization so
that, given a scalable application with few conflicts, the STM will
not introduce contention on metadata that will impede scalability.
The key mechanisms we used to achieve this are:

• semivisible reads for containing the overhead of ensuring con-
sistent execution;

• scalable non-zero indicators (SNZIs) to make read sharing with
semivisible reads scalable; and

• a novel conflict-based implicit privatization algorithm that is
integrated with the mechanisms above to avoid synchronization
between transactions that do not conflict at the application level.

SkySTM, which we are making available as an open-source li-
brary [1], is part of a hybrid transactional memory system that can
exploit best-effort hardware transactional memory to boost perfor-
mance. While we are pleased with the scalability of SkySTM, many
opportunities to improve it remain. In particular, further reducing
overhead while maintaining scalability is an important goal.

Acknowledgments: The authors wish to thank Dave Dice and Nir
Shavit for useful discussions. They also identified the problem that
came to be known as the privatization problem [8].

References
[1] http://research.sun.com/scalable/.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded transactional memory. InHPCA, Feb. 2005.

[3] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware memory
protection to build a high-performance, strongly-atomic hybrid
transactional memory. InISCA, 2008.

[4] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An effective hybrid
transactional memory system with strong isolation guarantees. In
ISCA, Jun 2007.

[5] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. InASPLOS, 2006.

[6] D. Dice, November 2008. Personal communication.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional lockingII. In DISC,
2006.

[8] D. Dice and N. Shavit. What really makes transactions faster? In
Transact, 2006.

[9] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable nonzero
indicators. InPODC, 2007.

[10] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. InPPoPP, 2008.

[11] G. Grohoski. Niagara-2: A highly threaded server-on-a-chip. Hot
Chips 18, 2006.

[12] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.Software
transactional memory for dynamic-sized data structures. InPODC,
2003.

[13] M. Herlihy and E. Moss. Transactional memory: Architectural
support for lock-free data structures. InISCA, 1993.

[14] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg.
McRT-Malloc: A scalable transactional memory allocator. InISMM,
2006.

[15] Y. Lev and J.-W. Maessen. Split hardware transactions:true nesting
of transactions using best-effort hardware transactionalmemory. In
PPoPP, 2008.

[16] Y. Lev and M. Moir. Fast read sharing mechanism for software
transactional memory. InPODC, 2004.

[17] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transactional
memory. InTransact, 2007.

[18] V. Marathe, W. Scherer, and M. Scott. Adaptive softwaretransactional
memory. InDISC, 2005.

[19] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the overhead of nonblocking
software transactional memory. InTransact, 2006.

[20] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable techniques for
transparent privatization in software transactional memory. In ICPP,
2008.

[21] M. Olszewski, J. Cutler, and J. Steffan. JudoSTM: A dynamic binary-
rewriting approach to software transactional memory. InPACT, Sept.
2007.

[22] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory.
In ISCA, 2005.

[23] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory
with scalable time bases. InSPAA, 2007.

[24] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A high performance software transac-
tional memory system for a multi-core runtime. InPPoPP, 2006.

[25] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural support
for software transactional memory. InMICRO, 2006.

[26] N. Shavit and D. Touitou. Software transactional memory.In PODC,
1995.

[27] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott.
Privatization techniques for software transactional memory. Technical
Report 915, Univ. of Rochester, 2007.

[28] M. F. Spear, V. J. Marathe, W. N. S. III, and M. L. Scott. Conflict
detection and validation strategies for software transactional memory.
In DISC, 2006.

[29] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: Scalable
transactions with a single atomic instruction. InSPAA, 2008.

[30] The TL2 library. http://research.sun.com/scalable.

[31] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling hardware
transactional memory from caches. InHPCA, 2007.

[32] R. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, andH.-H. Lee.
Kicking the tires of software transactional memory: Why the going
gets tough. InSPAA, 2008.

