Anatomy of a Scalable Software Transactional Memory

Yossi Lev Victor Luchangco Marek Olszewski
Brown University and Virendra J. Marathe Massachusetts Institute of Technology
Sun Microsystems Laboratories Mark Moir Dan Nussbaum and Sun Microsystems Laboratories

yosef.lev@sun.com mareko@csail.mit.edu

Sun Microsystems Laboratories
{victor.luchangco,virendra.marathe,mark.moir,dan.nussbaum}@sun.com

Abstract However, these mechanisms generally do not scale well to large
Existing software transactional memory (STM) implementations numbers of _threads, espemall_y_ in _multl-chlp shar_ed memory Sys-
tems, in which frequent modifications of centralized data struc-

often exhibit poor scalability, usually because of nonscalable mech- . - .
anisms for read sharing, transactional consistency, and privatiza-t“res leads to high latency and excessive memory coherence traffic.

tion; some STMs also have nonscalable centralized commit mecha- N€S€ problems are exacerbated when we consider STMs that sup-

nisms. We describe novel techniques to eliminate bottlenecks from portprivatization[S_, 14, 27'. 20].'.WhiCh is wide_ly considered to be
all of these mechanisms, and present SkySTM, which employs IMmPortant for providing an intuitive programming model.
these techniques. SkySTM is the first STM that supports privatiza- ' this paper, we prese@ikySTM the first STM that supports

tion and scales on modern multicore multiprocessors with hundreds Privatization and can scale to systems with hundreds of hardware
of hardware threads on multiple chips. threads across multiple multicore chips. We are releasing an open-

A central theme in this work is avoiding frequent updates to SOUTCe library containing SkySTM and other STMs discussed in

centralized metadata, especially for multi-chip systems, in which this paper (see [1]). _ . .

the cost of accessing centralized metadata increases dramaticalhf. SkySTM is designed to work inaybrid transactional memory

A key mechanism we use to do so is a scalable nonzero indicator[>) System, allowing transactions to be executed using hardware

(SNZI), which was designed for this purpose. A secondary contri- fansactional memory support if available and effective, otherwise

bution of the paper is a new and simplified SNZI algorithm. running transactions in software. Hybrid transactional memory re-
Our scalable privatization mechanism imposes only about 4% duires hardware and software transactions to interoperate correctly.

overhead in low-contention experiments; when contention is higher, SKYSTM is designed to minimize overhead for hardware transac-

the overhead still reaches only 35% with over 250 threads. In tons and to avoid aborting them unnecessarily.

contrast, prior approaches have been reported as imposing over Our contributions include detailed descriptions of novel scalable

100% 0\;erhead in some cases, even with only 8 threads. mechanisms for efficiently ensuring transactional consistency and
' for supporting read sharing and a privatization guarantee, along

1 ducti with performance experiments demonstrating their effectiveness in
- Introduction achieving a scalable STM. Below we provide some background to
The advent of multicore chips has made multiprocessors ubiquitous,provide context for these mechanisms.

and the hardware threads per chip and multicore chips per multi-

processor system continue to increase. Scalable applications—thatl.1 Scalability of STMs

is, applications that can effectively exploit more hardware threads
as they become available—are difficult to construct due to trade-
offs between performance, scalability, and complexity. Traditional
lock-based programming is too difficult and error-prone to support
widespread development of scalable applications.

Transactional memory [13] has gained momentum as an alterna
tive to lock-based programming. With transactional memory, rather
than using locks to ensure that critical sections of code appear
atomic, a programmer simply indicates that such a section should
be executed as a transaction; the system is responsible for guara
teeing that the transaction appears to execute atomically.

Many proposals exist for implementing transactional memory re
in hardware [13, 2, 22, 31], software [26, 7, 12, 18, 21], and a
combination of the two [5, 17, 4, 25, 15, 3]; realizing and improving
these implementations remains an active area of research. Unles
hardware support for transactional memory becomes as ubiquitou
as multiprocessors, and until such a time, software transactional
memory (STM) is necessary to support transactional programming

Recent advances in STM performance [7, 29, 24] have been
achieved mostly by using centralized synchronization mechanisms

Early STM systems either imposed substantial overhead in order
to guarantee that user code always executes in a “consistent” state,
or allowed inconsistent states to be observed, which can lead to
arbitrary behavior in unmanaged languages such as C and C++. Re-
cent breakthroughs in STM performance can be attributed largely
to clever mechanisms for guaranteeing consistent transactional ex-
ecution with much lower overhead than previous approaches. For
example, the TL2 STM [7] uses a timestamp mechanism to allow
the system to verify in constant time that each new transactional
"fead is consistent with the previous ones.

TL2's timestamp mechanism—and other related techniques for
ducing the overhead of maintaining consistency—uses central-
ized metadata that is modified by every transaction in the worst
case. TL2’s careful integration of a central timestamp mechanism

ields excellent performance compared to other STMs, and reason-
able scalability up to a point. However, as we show, in systems with
multiple multicore chips, the cost of frequently modifying the cen-
‘tralized timestamp increases dramatically, and the algorithm stops
scaling. Other algorithms that frequently update centralized data

'structures are likely to suffer similarly.

Copyright 2009 Sun Microsystems, Inc. All rights reserved. 1The name SkySTM is a play on the words “Scalable Hybrid STM".

Variants on the basic TL2 algorithm can reduce the frequency many there are, to replace the nonscalable counter with a SNZI.
of updates to the global counter, thus significantly improving scal- The integration of SNZI into SkySTM demonstrates that these ob-
ability. However, neither the basic form of TL2 nor any of these jects are not merely of theoretical interest, but are also useful in
variants supports privatization. Marathe et al. [20] describe a vari- practice. A secondary contribution of our paper is to present a new
ant of TL2 due to Detlefs et al. that supports privatization. We have and simpler SNZ| algorithm that we discovered recently.
also implemented this variant and, as we show, its scalability on
multi-chip multicore systems is even worse than the basic formof 1.2 Supporting privatization
TL2.2 Moreover, as far as we know, the modifications required to
make TL2 support privatization are incompatible with the variants
to relieve pressure on the global counter. Thus, to date there is no
scalable STM that supports privatization.

Supporting privatization is not the only challenge in achieving
a scalable STM. Below we explain our general approach to achiev-
ing scalability, and discuss how we have applied this approach to
eliminate or reduce scalability bottlenecks in several aspects of the
STM, finishing with how we provide scalable privatization.

If a transactional application is not scalable due to contention on
applicationdata, the best STM cannot make it so. Thus, our goal is
to avoid using mechanisms in the STM tliattoducesynchroniza-
tion bottlenecks even when the application is scalable. A primary : X ;
design goal for achieving this is to avoid contention on the STMs COPied back to the memory when the transaction commits, as op-
metadata when contention on application data is low. This suggestspO.S(ad o one which writes immediately in place and undoes thos_,e
a conflict-basedapproach to synchronization, in which contention WNites if the transaction aborts), the other thread may have commit-
on STM metadata is induced only (or at least primarily) when there tbed ll()(tefore the buZer_wg;l\s |solag:ad but still be_t(;]opy_ltng 'tt)S wgtetsgt
is contention on application datahis approach has driven the de- ¢ rgﬁ S a?:tgﬁrsn\?v% S.?m ?k: arirge r?on:n;) fﬁ%ﬁzx lei\tlg ses'rh)é sia \(/)vrri?e s
velopment of the scalable STM mechanisms we present. . . . L

The first use of this approach concerns maintaining consistencymaly interfere Wlltt.?hthe ctjhr;ad t?at E.hmksttr? e‘fpfemorly ,I,S pf)rlva:]e. K
during transactional execution. Early STM systems designed by us ¢ mr:emca)lrnyismcli)rln ::3 Igorz?(grlrfaléoﬂsrﬁa ebel E:ggﬁ] aosf?a(r:egr(;ata
and others used eithémvisible reads, in which each transaction y piex. e, y

maintains per-read metadata to be revalidated after each subsequerﬁtgzit#rr: a(;hse z;‘ er?én c;\éetzlligrrc;m]ngt rqoactgsséti:]uct?hrgr,] thlgg e%aszgg i:]c:Oa
read; orvisible reads, in which each reader “registers” for each gacy rytorp 9 P

memory location it reads, so that a transaction wishing to write it a different shared data structure, and at some point it may be deallo-

can identify and abort such readers. Invisible read schemes impose(f 2:2%5;%%?3 oﬁ‘rr?grircr)]rmg:;‘ct(r)eeii(irgIgggezzggtr?é?wtcrgﬁg atlgsil;n%rlll-
substantial overhead on transactions due to the need for repeate& y y

validation, and in hybrid TM contexts impose additional overhead or deallocated is undesirable: doing so will be error-prone, espe-
on hardware transactions to update metadata to allow SoftWmecmllywhenmcrementally adopting transactional programming into

readers to detect conflicts. Visible read schemes were Complexalarge lock-based application, and the resulting bugs will manifest
expensive, and nonscalable. nondeterministically and be difficult to reproduce and diagnose.

These tradeoffs led us to develspmivisiblereads (originally Previous mechanisms famplicit privatization, which address

. . . i ' this problem without requiring explicit annotation, rely on expen-
semi-transparent reads [16]): a transaction that wishes to write to sive centralized mechanisms that severely impact scalability. For
a memory location can determine whetlaay other transaction is

. . . ; - example, experiments presented by Yoo et al. [32] show that allow-
reading th_e location, bUt nmhlch tran_sactlon(s). This enabl_es us ing programmers talisabletheir centralized privatization mecha-
to determine when writers conflict with readers and to maintain a

. - .+ nism can result in more than a 100% performance improvement
counter that is incremented whenever such a conflict occurs. With P P

care, we can arrange for transactions to avoid expensive validationWith just 8 threads in some cases. Allowing programmers to dis-
in the vast majority of cases by checking whetheywriter-reader able privatization where it inot needed is undoubtedly better than

conflict has occurred during its execution. The counter is updated rgth|r|nghthem to prowlse %nnotatlons Whers.'ﬁ?ded' Howmcejver,d.
only when there are writer-reader conflicts, consistent with the with such severe overhead, programmers will be motivated to dis-
. . L - able privatization aggressively. Apart from the additional burden
conflict-driven synchronization approach described above. . e
: : L : ... this places on the programmer, it is inevitable that programmers
An obvious way to implement semivisible reads is to maintain will incorrectly disable privatization, or perhaps subsequent code
a counter of readers for each memory location. However this sim- hanaes will)r/ender a F;eviousl co’rrec? usa pe incorre%t 20ain re-
ple approach introduces metadata contention between transactiongulting in subtle nondetperministiz bugs. We arge therefore fno%ivated
that do not conflict (read sharing of application data causes oMo finc?the best implicit privatization r?wéchanisms ossible to avoid
tended write sharing of metadata). This problem was one of the pri-the need for ex Iicﬁt rop rammer annotations P
mary motivations behind Scalable NonZero Indicator (SNZI, pro- plicit prog :

nounced "shazzy”) algorithms [9]. We exploit the fact that writers in \i\r/gnp;gcst?grt]3\/2%%'nﬁr'\;ﬁgﬁﬂggnmﬁggzgg?gr"gV;’:'chn?rggg'z'
need to know only if there arany conflicting readers, not how 9 y 9 !

the aforementioned mechanisms, which require transactions to wait
even for nonconflicting transactions. Thus, if the application has

few conflicts, the privatization mechanism does not impede its scal-
ability. Our scalable mechanisms for supporting transactional con-

data with the result that nonconflicting memory accesses iappécation S|st'\e/lncy ﬁnd re?dzsharlng fa|10|_lltatedour grlvatlzatlt_)n mec_hanlsm.h
can sometimes result in “false” conflicts, which can sometimegdefscal- arathe et al. [20] recently introduced a new privatization mech-

ability even when the application is scalable. In the remaird the paper, ~ @nism that is similarly motivated. In particular, they too observe
we include false conflicts when we refer to application cotslireducing that a privatizing transaction need not wait for others with which
or eliminating false conflicts is future work. it does not conflict. However, their solution requires a centralized

Making an STM scalable is made more difficult by the so-called
privatization problen(8, 14, 27, 20]: A thread may use a transac-
tion to “isolate” a shared chunk of memory so that no other thread
should be able to access it (e.g., by setting all shared references to
that memory chunk tt&NULL), and thereafter (nontransactionally)
operate on that memory as though it were private. Allowing non-
transactional access to private memory is crucial for both perfor-
mance and interoperability reasons (see Section 5). However, with
many prior STM implementations, an isolated buffer may still be
written by another threadfter the thread isolating the buffer fin-
ishes committing. For example, in a deferred-writes STM (i.e., one
in which values written by a transaction are kept in a write set and

?Dice experimented with essentially the same algorithm inye20D7 [6],
but did not pursue it due to its poor performance.

3 As explained in Section 2.1, SkySTM hashes memory locatiomsetia-

list of all active transactions, and their experiments confirm our in- that are write owned by the committed transaction must wait for it
tuition that this list becomes a bottleneck and impedes scalability, to release ownership of those locations). A transaction never blocks
even on a single-chip multicore system. other transactions while it is executing user code.

In Section 2, we review the HyTM STM [5], from which
SkySTM evolved, and also some other relevant STMs. In Section 3,
we describe the mechanism we use to validate reads quickly with-2 2 T2 and its variants
out introducing too much contention, and show how it improves
scalability over the centralized timestamp mechanism used in TL2
and other STMs. Section 4 describes our new SNZI algorithm and

The need to validate reads makes it difficult to make transactional
memory systems efficient and scalable. Whenever a transaction

shows how SNZI| enables scalable read sharing. Section 5 discusse ea?(s_ some r_ntem;)ry_tlrc])ct?]tlon, Ilt mu_fthensure t_hat Ithe va(ljugr;:_ggts
our privatization guarantee, describes a scalable algorithm that pro2aCcK IS consistent with the values 1t has previously read. This IS

vides this guarantee, and demonstrates that it incurs modest Overpa_rtlcglarly |r_np0rtant in unmanaged Ianguages ke, becaus‘?
head and does not impede scalability. We conclude in Section 6. USiNg inconsistent reads can lead to arbitrary program behavior. A
nave validation algorithm that iterates over the entire read set on

every validation incurs overhead that is quadratic in the number of
2. Background reads over the whole transaction. This overhead dominates the cost

of the transaction as its size increases.
21 The HyTMSTM Like SkySTM, TL2 [7] associates an orec with each memory
The HyTM STM [5] uses a deferred writes approach, recording |ocation. TL2 uses a global shared counter to generate timestamps
transactional writes in a private write set until commit time, when for committed transactions. Transactions are serialized in the order
they are copied back to memory. A transaction can own a location of their (unique) timestamps. When a transaction commits, it stores
either for reading or for writing, where write ownership is exclu- jts timestamp in the orec of each location that it writes. Thus,
sive, and read ownership can be shared. Each location is associateg transaction can quickly check that a location has not changed
with anownership recordoreg), which keeps the ownership infor- since it began by recording the global counter when it begins, and
mation for the locatiorfswith which it is associated. comparing that value to the timestamp in the orec.

Both the HyTM STM library and the SkySTM library support The open-source TL2 library [30] contains several variants on
various modes, for example invisible vs. semivisible reads, and ea-the basic algorithm described in [7], which differ in how they man-
ger vs. lazy ownership acquisition of locations to be written. In this age the global counter. As originally described, TL2 increments the
paper, we focus on semivisible reads and eager write acquisition,counter every time a transaction that writes a location commits, and
and comment on differences for other modes where appropriate. uses the resulting value as its timestamp. Thus, every such transac-

Write ownership is obtained by storing the id of the (unique) tion has a unique timestamp. This induces contention on the global
owner in the appropriate orec. This ownership can be revoked only counter, even when transactions do not conflict with each other. In
after the current owner is aborted. For read ownership, the HyTM its default mode, called GV4, TL2 mitigates this problem by us-
STM uses semivisible reads, whereby a counter in the orec indi-ing a pass-on-failurestrategy: if a transaction fails to increment
cates how many (but not which) transactions own it for reading. In the counter, it does not retry the increment, but instead uses the
contrast to write ownership, when read ownership is revoked, the new value of the counter as its timestamp. This is safe because the
owners are not notified and aborted,; it is the readers’ responsibil-counter is always incremented after the transaction has locked all
ity to validate their read ownerships and abort themselves if any the orecs associated with its writes, and validated its reads; hence
of those ownerships are revoked. To do that, when a transaction actransactions that contend on incrementing the counter do not con-
quires an orec for reading (by incrementing the orec’s read counter) flict with each other, and can therefore commit “at the same time”,
it keeps a snapshot indicating the id of the last transaction that ysing the same timestamp. This optimization significantly reduces
write-owned the orec. These snapshots are kept in a private reacthe cost of the contention as long as the cost of shared memory
set, and are used t@lidatethe transaction, i.e., check whether any access is low, because each writer-transaction tries to increment
of its read ownerships have been revoked. A completed transactionthe counter exactly once, whether it succeeds or fails. However, as
whether committed or aborted, relinquishes all its ownerships. we later show, as the cost of shared memory access increases, this

Using semivisible reads facilitates efficient interaction with mechanism’s scalability breaks down.
hardware transactions: When first accessing a location, a hardware An alternate scheme, called GV5, further reduces contention for
transaction checks the associated orec to make sure that the accesfe global counter by not requiring every transaction exgempt
does not conflict with a software transaction. If the hardware trans-to increment it. Instead, when a transaction commits, it reads the
action writes the location, it ensures that the read count is 0; if a global counter and increments it locally, using the resulting value
software transaction later changes the counter to a nonzero valuegs its timestamp but not writing the incremented value back to the
the hardware transaction is aborted. Thus, the hardware transactiorylobal counter. Thus, unlike in GV4, orecs may have timestamps
need not change any metadata used by the STM, which is importantthat are greater than the value in the global counter. If a transaction
because we want to minimize the overhead for hardware transacaccesses such an orec, then it aborts and ensures that the global
tions. As we later show, semivisible reads also enables a scalablecounter’s value is at least as large as the timestamp in the orec
mechanism for fast read validation. before retrying. Although GV5 reduces contention on the global

Finally, a transaction (after validating its read set for the last counter, it introduces unnecessary aborts. In particular, if a single
time) commits by atomically changing its status to “Committed”. thread repeatedly accesses the same location in successive transac-
This locks all the orecs it owns for writing, making the write own- tions, every second transaction will fail even if there are no other
ership irrevocable until it is released (which is after the transaction threads running.
finishes copying the values from its write set to the memory loca- GV6, the variant that seems to perform the best, combines the
tions it wrote). Once a transaction commits, it becomes blocking two schemes described above: A transaction uses the GV4 scheme
(i.e., all concurrent transactions attempting to access the locationswith probability 1/32, and the GV5 scheme the rest of the time.
This approach aims to avoid unnecessary aborts by advancing the
4 Several locations are associated with each orec, intragdalse conflicts counter, but avoids a bottleneck on the counter by incrementing it
but not affecting correctness. less frequently than GV4.

2.3 Other recent STMs with centralized mechanisms

RSTM [19] uses a globatommitting countethat is incremented

every time a writer transaction commits, and transactions do full

read set validation only when the global counter changes [28].
RingSTM [29] reduces the cost of validation by keeping an

ordered ring with a record for each transaction that has committed,

but may not have finished copying the values from its write set
to shared memory. Again, the ring is a centralized structure that
is modified by every transaction, and thus is likely to prevent
RingSTM from scaling up to systems with many threads.

Other timestamp-based STMs have focused on reducing con
tention on the centralized timestamp using hardware support for dis-
tributed synchronized hardware clocks [23] or techniques to reduce
transaction aborts due to false conflicts [10]. These STMs have only
been demonstrated to scale to 16 or fewer threads, and they do no

guarantee correct privatization.

2.4 Adding privatization to TL2

As mentioned above, TL2 does not provide privatization. One
algorithm due to Detlefs et al. (described in [20]) does provide
privatization in a TL2-like STM.

Marathe et al. [27, 20] identify two kinds of undesirable be-
havior exhibited by many early STMs with respect to privatization:
“delayed cleanup” and “doomed transactiom®layed cleanupc-
curs when a transaction that is finishing its cleanup (either copying
back values to memory during commit in a deferred-writes STM,
or rolling back changes upon abort in an in-place STM) interferes

with a thread that has already privatized the affected memory. The

doomed transactioproblem occurs when a transaction reads from

memory that has already been privatized and is being updated non

transactionally; the STM fails to detect the conflict with the non-

transactional accesses, and therefore delivers inconsistent data t

the application, which can result in arbitrary incorrect behavior.
The delayed cleanup problem can manifest in TL2 if the serial-
ization and completion (returning from the commit operation) or-

der of transactions are inverted. To avoid this inversion, Ord uses

a ticket-lock like algorithm to enforce consistent serialization and
completion orders. Essentially, each transaction grabs a ticket at th
beginning of its commit operation (after acquiring write ownership

of locations in its write set), completes its validation and cleanup,
and then waits for its “turn” to return from the commit operation.

The doomed transaction problem can also arise in TL2 because
when a transaction reads a location, it checks only that this location
has not been written transactionally since the transaction began; it
does not ensure that other locations previously read still contain the
values read. Thus, the transaction may read a buffer that anothe

transaction privatized by writing such a location, and not detect the
conflict until it attempts to commiit. If the transaction is a read-only

transaction, it might even successfully commit with the inconsis-
tent view of the memory. To avoid the problem, Ord requires every

set validation ifRWConf | i ct Count er has not changed since the
last time the read set was known to be valid. Instead, a transaction
readsRWConf | i ct Count er when it begins, and uses the value
read for fast read validation after every read operation. If the trans-
action detects tha®AConf | i ct Count er has changed, it does
a full read validation, replacing its local version with the newW
Confl i ct Count er value if the full validation succeeds. This is
safe because the read set is known to be valid as of a point in time
after the new value was obtained.

To facilitate incrementindRWConf | i ct Count er appropri-

_ately, we add a one-bit fieldwe to each orec. This bit is set when-

ever a transaction acquires write ownership of an orec that was
owned by at least one reader (i.e., the transaction “steals” the orec
from the readers). If the transaction later commits rthe bit tells

it that it must incremen®W\Conf | i ct Count er, as explained be-
ow. This information is stored in the orec—and not just recorded
privately by the stealing transaction—so that if the orec is stolen
again, the need to incremeR¥\Conf | i ct Count er is not lost.

At commit time, if a transaction owns for writing an orec that
has itsr we bit set, it increment®&AConf | i ct Count er . This in-
crement must be performed at or before the final read validation of a
successful transaction (which precedes any copying of values from
the write set back to shared memory). We first try to validate the
read set and incremeR\Conf | i ct Count er together by call-
ing Fet chAndl nc on RWConf | i ¢t Count er and comparing
the value returned to the local version mentioned abov@\gGon-
flict Count er has changed, we run a full read validation, know-
ing that if it succeedsdR\WConf | i ct Count er has already been
incremented. A transaction that incremeR®Conf | i ct Count -
er clears the we bit of an orec it owns for writing when it releases
the write ownership of that orecs.

We can improve the scalability of this approach by using a

?)ass—on—failureﬁtrategy like the one used in TL2: a thread fails

to incrementRWConf | i ct Count er only if some other thread
did so successfully at the same time, and our strategy is correct
as long afRWConf | i ct Count er has been incremented at least
once since the transaction last stole any orec and before it commits.
Therefore, the contention on the centRMConf | i ct Count er

ill never exceed the contention on the TL2 central counter, and
will match it only if all writing transactions conflict with other
transactions, in which case the application is unlikely to scale well
regardless of the STM implementation.

Fast read validation witRWConf | i ct Count er also guaran-

tees that all read values are consistent at some pliribg the
validation operation, in contrast to TL2's mechanism, which only

rguarantees that they were current at the beginning of the transac-

tion. This is why SkySTM is immune to the doomed transaction
problem while TL2 is not (see Sections 2.4 and 5.5).

Integration with Hardware Transactions: As described so far,
aborted transactions and transactions that do not own for writing

transaction to revalidate its entire read set every time any transac2ny orec whosewc bitis set neither upda®@AConf | i ct Count -

tion commits. Information about new commits is relayed via the
global counter in TL2. Since the counter in GV5 (and hence in
GV6) does not reliably indicate whether a transaction committed
recently, Ord cannot exploit the benefits of these algorithms.

3. Scalable and Efficient Transactional Reads
3.1 Fastread validation

SkySTM uses a new variant of t&\Conf | i ct Count er algo-
rithm [16, 5] to provide fast read validation. This algorithm exploits

er nor clear ther we bit of orecs whose ownership they release.
However, in a system that allows software and hardware transac-
tions to coexist, an unowned orec whasec bit is set is prob-
lematic: a hardware transaction that writes to a location mapping
to such an orec must either increm&wConf | i ct Count er or
abort itself. Both these options are unacceptable: the former would
add significant overhead to hardware execution and the latter would
reduce the number of transactions that can succeed in hardware.
We instead address the issue in two ways:

the fact that we have semivisible reads by incrementing a global 1. An aborted transaction behaves like a committing transaction

counterRWConf | i ct Count er only when a writing transaction
that has conflicted with a readerommits, rather than every time
anywriting transaction commits. We need not perform a full read-

in that it update®RWConf | i ct Count er if any member of its
write set has its we bit set and clears thewc bit of any orec
for which it successfully releases write ownership.

60000 other solutions, as it reduces the contention on the centralized vari-
SKySTM —>— able without the overhead of semivisible reads. Unfortunately, we

e are not aware of any way to provide privatization with the GV6 vari-
a 50000 ol ock | ant of TL2, or avoid the additional overhead for concurrent hard-
£ ware transactions that is imposed by TL2’s invisible reads.
& 40000 - 1 Note that despite TL2’s centralized timestamp variable, TL2-
©) GV4 scales very well when its communication remains on-chip.
= 30000 |] The combination of a shared L2 cache and TL2's pass-on-failure
e strategy reduces contention on the timestamp sufficiently to allow
2 50000 | | good scalability. However, with more than 64 threads, the added
o cost of off-chip L2 cache misses, caused by the timestamp variable
e 10000 bouncing between the four chips, produces significant performance

degradation.

When we modify the benchmark to increase contention, the
performance of the TL2-GV4 variants doesn’t change much, but
116324864 96 128 192 256 SkySTM performance suffers considerable degradation, to the

Number of threads point where SkySTM’s performance only beats that of TL2-GV4
by 13% at 256 threads. This degradation is caused at least in part
by SkySTM’s poor contention management. Addressing that issue
is ongoing work.

Figure 1. HashTable withkeyrange= 128 000, 50% insertions,
50% deletions.

2. The last transaction to releasadownership of an orecwhose 4, Scalable Read-Sharing
rwe bit is set also clears the bit after incrementiRgCon-

£1i ct Count er . In applications with high levels of read sharing, semivisible reads
) can introduce significant contention even when there is no conflict
These measures cau®éConf | i ct Count er to change more of- jnherent to the application. For example, the root of a binary tree is

ten, inducing more full validations, than necessary for correctness.read by every operation on the tree, but typically is rarely written. In
But that slight additional cost increases the number of transactionsthis case, the root should not be a significant source of contention.
that can run in hardware without introducing unnecessary overheadHowever, with the naive implementation of semivisible reads de-
for hardware execution. scribed in Section 2.1, which uses a simple read counter in each
orec, every operation modifies the read counter twice. Thus, the
read counter is highly contended. For SkySTM to scale for such
All experiments presented in this paper were run on a 1.4 GHz applications, we must reduce the contention on the read counter.

3.2 Evaluation

Sun SPARC Enterprig®@ T5440 server [11], which combines The key observation for reducing contention on the read counter
chip-level multithreading @MT) and symmetric multiprocessing s that the exact value of the counter is not important: it matters only
(SMP design aspects. The T5440 contains four UltraSP&RRT2 whether the count is zero or nonzero. Therefore, two transactions

Plus processors connected via four UltraSPARC T2 Plus XBR co- that want to acquire read ownership of an orec need not contend
herency hubs. Each T2 Plus processor contains a single 4 MB L2if the orec is already owned for reading by some other transaction;
cache shared by eight cores, each of which supports 8 hardwarethe read counter is already nonzero and additional read acquisitions
threads, for a total of 64 hardware threads per chip. Thus, while the will not make it zero. Similarly, a transaction releasing read owner-
machine supports up to 256 hardware threads, inter-thread commuship will not make the read counter zero unless it is the only reader.
nication overhead increases significantly when running more than This observation led to the development ocalable nonzero in-
64 threads, as then not all threads share the same L2 cache. dicator (SNZI) [9], which supportsarrive and depart operations

In this section, we show that a centralized synchronization that respectively increment and decrement an abstract counder, an
mechanism, such as the timestamp variable used by the TL2 STM,a queryoperation that determines whether the counter is nonzero.
may severely impede scalability, even in the absence of application To implement SNZI, we use a rooted tree of SNZI objects in
contention. We use a simple HashTable benchmark, which storeswhich a child is implemented using its parent (i.e., an operation
keys in 131,072) buckets, with chaining. Insert and delete op- on a child may invoke operations on its parent). A reader may
erations do not modify the table if the target key is found or not invoke an arrive operation at any node; it invokes the corresponding
found respectively. Each thread executes insert and remove opereepart operation on the same node. An arrive operation on a node
ations with equal probability (50%) with keys chosen uniformly other than the root invokes an arrive operation on its parent if it
at random from the range of 0 to 127,999. The table is initialized may change the child’s abstract counter from 0 to 1, and a depart
with 64,000 random keys in this range, so that the probability for operation on the child invokes a depart operation on the parent if it
an insert or remove operation to succeed remains roughly the samechanges the child’s abstract counter from 1 to 0. Query operations
(50%) throughout the run (the table always contains approximately occur directly on the SNZI root node, whose abstract counter is
half of the keys in the range). The benchmark provides a high de-nonzero if and only if the abstract counter of any node in the
gree of parallelism, and thus should scale well. SNZI tree is nonzero. Thus, a child acts as a filter for its parent,

Figure 1 shows the throughput of the HashTable benchmark and the tree structure greatly reduces contention for the root node.
when running with: TL2-GV4, TL2-GV6, SkySTM using semivisi- Although the root is frequently accessed, it is rarely written, so we
ble reads and the centralizB\Conf | i ct Count er mechanism, can use a nonscalable algorithm (e.qg., a simple counter) at the root
and a single lock. SkySTM scales almost linearly up to 256 threads,without jeopardizing the scalability of the solution as a whole.
while TL2-GV4 scales only while all threads are on the same chip The basic SNZI object does not suffice for read indicators: a
(i.e., up to 64 threads); beyond this point, throughput decreasestransaction wanting to write a location may “steal” the associated
Thus, although SkySTM runs 1.39 times slower than TL2-GV4 on orec from transactions that own it for reading. In that case, the
a single-thread run, its throughput is 4.94 times higher with 256 read counter is reset to 0. This motivated the development of the
threads. On the other hand, the GV6 variant of TL2 outperforms all SNZI-R (“snazzier”) variant [9], which supportsrasetoperation.

Although subsequent readers that arrive and depart (after the writ-X = (ctr,epoch: (N,N), initially (0,0)
ing transaction commits or aborts) increment and decrement the parent SNZI-R
abstract counter normally, readers whose ownership was revoked

when the orec was stolen musit decrement the abstract counter:
their contribution to the read counter was already removed by the

reset operation. Often, a reader does not attempt to depart because
it recognizes that its ownership has been revoked. However, the at-
tempt cannot always be avoided: the reader might be just about to
release ownership of the orec (i.e., depart) when the orec is stolen.
Therefore, we must distinguish departs by readers whose ownership

has been revoked from those that still own the orec for reading.
To achieve this, a SNZI-R object maintains gpoch which is

returned by the query operation (together with whether the abstract
counter is nonzero). To arrive, a reader uses the query operation
to determine the current epoch, and tries to arrive in that epoch.

To depart, it uses the epoch to which it previously arrived. A reset

operation replaces the current epoch with a new one (epochs must

not be reused). The abstract counter is modified only by arrive and
depart operations of the current epoch. Thus, if the current dpoch

Arrive(e)
pArr — false
repeat
x — ReadX)
if x.epoch> ethen return
if x.ctr=0 Vv x.epoch< ethen
X «— (L€
if —=pArr then
parentArrive(e)
PAIT « true
else
X — (x.ctr+1e)
until CAS X, x,X')
if pArr A X.ctr # 1 then
parentDepart(e)
return

changed (by a reset operation) between the time a reader arrives and

the time it departs, the reader’s depart operation will have no effect

on the abstract counter. In SkySTM, a reset operation coincides

with a write acquisition of an orec, and the epoch is the id of the
transaction that last acquired it for writing.

Since the publication of [9], we developed a new version of
the hierarchical SNZI algorithm that is significantly simpler and
slightly more efficient. Pseudocode for the new SNZI-R arrive and
depart operatioffsis presented in Figure 2. The key difference
between this new algorithm and the original one is that in the new
algorithm, when the counter is zero, iest arrive at the parent
and only then try to increment the child’s counter from zero to one.
Changing the order in which we arrive at the parent and modify
the child’s counter eliminates the need for the intermec%alalue
and the version number used in the original SNZI algorithm [9],
and significantly simplifies the correctness proof.

4.1 SNZlin SkySTM

SkySTM uses the new SNZI-R algorithm for implementing the
read indicator in an orec. A small counter, denoted asSNZI
countet is used in the orec to implement a root SNZI object;
an arrive or depart operation on that object simply increments or
decrements the orec’s SNZI counter, conditional on the epoch of
the arrive or depart operation being the current epoch (recall that th
current epoch is the id of the transaction that most recently owned
the orec for writing, which is also maintained in the orec).

Depart(e)
repeat
X — ReadX)
if x.epoch# ethen return
until CAS X, x, (x.ctr—1,€))
if x.ctr =1 then
parentDepart(e)

Figure 2. Code for new SNZI-R Arrive and Depart operations

orec for the indicator, but we did not find it necessary in practice
for SkySTM.)

Although the SNZI-R algorithm greatly improves the scalabil-
ity of read indicators, it entails nontrivial overhead compared to the
simple counter. Therefore, SkySTM uses the SuperSNZI-R strat-
egy [9], which incorporates a small additiomead counteffield in
the orec, to be used when the contention is low. To arrive at the read
indicator of an orec, a transaction checks whether the orec’s SNZI
counter is zero, and if so, tries to arrive by simply incrementing
the read counter. After several failed attempts to do so, the transac-
tion resorts to arriving using the SNZI-R tree associated with the
orec. Thus, the more costly SNZI-R algorithm is used only when
the SNZI counter is already nonzero (indicating that the orec’s read
indicator is already contended), or when contention on the read

The SNZI-R tree structure has three layers: the orec, a single . 2 S ; :
child node of the orec and several “grandchild” leaf nodes. Each counter is encountered. In addition to significantly improving per-

thread is assigned a leaf; it always arrives and departs at this leafformance, using SuperSNZI-R allows SkySTM to allocate SNZI-R
Threads are scattered randomly among the leaves so that each ledf€€S Only for contended orecs, thus significantly reducing the space
is assigned to at most eight threads. We are exploring various ©verhead of the solution. i o
tree structures and assignment schemes to better adapt to different NOte that with the arrive operation presented in Figure 2, all
performance characteristics over a range of machine architectures.t'éads that read a node’s counter as 0 arrive at the node’s parent,
It can be shown that because the orec’s SNZI counter is incre-and then all but one of them (the one that successfully changes the
mented only by a single child node, and only when this node’s ab- 0d€’s counter from 0 to 1) cancel their arrival at the parent by
stract counter may change from 0 to 1, the orec’s SNZI counter is departing from it before returning from their arrive operation. To
at most 1 when no arrive operation is executing. Thus, we found reduce contention on the parent due to such superfluous arrivals,
that allocating a few bits in the orec for this counter is sufficient to SKYSTM uses a simple extension to the SNZI algorithm in which
avoid overflow; in the unusual case that the counter does get satu® thread announces, by writing to @mnounce flag using a

rated, we use a back off and retry strategy. (In [9], we introduced a regular write operation, that it is about to arrive at the parent; other
special algorithm for the root node that used only a single bit in the threads that observe this flag as set delay their arrival at the parent,
avoiding it completely if the node’s counter is modified while they

are delaying. While this simple extension does gwaranteethat

it will reduce the number of superfluous arrivals at the parent, it
works well in practice, significantly reducing the number of arrive
and depart operations invoked on the parent.

5As in [9], for simplicity of presentation, the pseudocodewsba@n arrive
operation that requires epochs to be totally ordered. '3k}, we use a
slightly modified variant that works with unordered epochs.

depend on centralized metadata that is modified frequently, and
SkySTM —*— hence severely degrade scalability.
ShySTMAELOCK In Section 2.4 we mentioned two privatization related problems,
ySTM-NoSNZ| —— .
20000 + g one due to delayed cleanup, and one due to doomed transactions.
As explained in Section 5.5, SkySTM (unlike TL2) is immune to
the doomed transaction problem. Below we explain how to address
the delayed cleanup problem in a scalable way. For clarity, our
description focuses on the followirggivatization guarantee

25000

15000

T
!

10000

T
!

If a transaction “isolates” a chunk of memory so that no
other thread should be able to access it (e.g., by setting
all shared references to that memory chunkité.L), then

5000 r 1 once the isolating transaction completes its commit phase,
no further writes to that memory chunk are executed by
other threads.

Throughput (Ops/ms)

I I TR n

0 e
116324864 96 128 192 256 This guarantee ensures that standard privatization idioms work as
Number of threads expected. In particular, a thread can “isolate” a memory buffer
Figure 3. HashTable with a high level of read sharikgyrange= by using a transaction to remove it from the shared (transac-
128 000, 50% insertions, 50% deletions. tional) space, and then subsequently access such prlvatlged memory
buffers safely without transactions. As discussed in Section 5.5, the
privatization algorithms considered in this paper actually provide a
4.2 Evaluation stronger guarantee that enabf@exy privatization in which one

. . . thread privatizes a chunk of memory on behalf of another.
In this section, we demonstrate how SNZI improves performance ik previous privatization mechanisms, our new scalable one
under heavy read sharing when using semivisible reads. To this endjg ¢onfjict-hasednonconflicting transactions do not wait for each
we introduce a level of indirection to the HashTable benchmark: in yiner. It does not use any centralized metadata, and hence does not
this variant, the table of buckets is accessed via a shared pointergact the scalability of conflict-free programs.
that has to be read (by all threads) at the beginning of each opera- " ajihough we describe our mechanism for avoiding the delayed
tion (such as might be used by a resizable hash table). We comparg,eanup problem in the context of SkySTM, which uses deferred
SkySTM with a version that uses simple counters for its read indi- writes, it can be applied to other STMs including TL2 and STMs
cators (that is, with SNZI disabled). Figure 3 presents the results. 15t yse in-place writes, and it works in a hybrid environment with

SkySTM scales reasonably well up to 256 threads despite heavypargware and software transactions running concurrently.
read sharing on the shared HashTable pointer. In contrast, the ver-

sion of SkySTM with SNZI disabled starts scaling worse than 51 The basic solution

SkySTM with as few as 16 threads, and when the number of threads o
exceeds 64, so that multiple chips are in use, throughput degrade@ur implicit privatization algorithm relies on the following simple
with additional threads. By 96 threads, SkySTM with SNZI dis- observation:

abled performs worse than the single global lock. A transaction that isolates a buffer must conflict with any

While SNZI greatly improves the scalability, it does not come other transaction that concurrently accesses that buffer.
for free: with more than 8 threads, the throughput of the HashTable

variant without the indirection is 36% higher than that of the vari- In particular, a privatizing transaction must write some shared data
ant with the indirection. The level of indirection introduces some to indicate that the buffer is no longer shared—data that must be
additional cost, but in similar experiments with TL2, it caused only read by any transaction that may access the buffer. For example,
a 12% degradation, suggesting that SkySTM’s degradation is pri-a buffer that is accessible only through a single global pointer

marily due to SNZI overhead, not the extra level of indirection. ~ can be isolated by setting that pointerNbLL. In this case, the
global pointer is the shared data involved in the conflict—it is

T written by the privatizing transaction and is read by all transactions
5. Scalable Privatization accessing the buffer. Thus, a privatizing transaction need wait only
Like most STMs, SkySTM does not suppsttong atomicity and for transactions that have read some location that it wrote.
therefore forbids concurrent accesses by nontransactionalearsd tr With an STM that uses deferred writes, no values are copied
actional accesses to the same data. If this rule is violated, the atomback into shared memory by a writing transaction until after it has
icity guarantee of transactional memory may be compromised, for executed its final read validation. Thus, a conflicting transaction
example by allowing a transaction to see inconsistent data or otherthat has not yet begun its final read validation cannot interfere with
threads to see internal states of a transaction. a privatizing transaction that has already committed because it will
However, it is desirable to allow nontransactional access to data fail that validation and abort. Thus, a privatizing transaction need
that might have beepreviouslyaccessed transactionally for atleast wait only for conflicting transactions that have begun their final
two reasons. First, processing the data may require the use of libraryread validations but not yet finished copying their write sets back
functions that have not been instrumented for use within transac-to memory.
tions. It is not always possible to recompile such functions—the To enable waiting for these transactions, we adob@amitting
source code may not be available, for example. Second, the instruindicator (Cl) field to each orec. This field indicates whether any
mentation necessary to run within transactions imposes significanttransaction that earlier had read ownership of that orec has already
overhead, so isolating data (using a transaction) and processing itexecuted its final read validation of that orec, but has not yet
nontransactionally can significantly improve overall performance. completed its copyback. Like the read indicator, the committing
As discussed in Section 1, we prefer to address the privatization indicator can be implemented by a simple counter—such a counter
problemimplicitly, without requiring explicit annotations by the would be incremented together with the final read validation of the
programmer. Previous implicit privatization mechanisms [24, 20] orec, and decremented after the commit operation has copied back

all values from its write set to shared memory. In this case, the ClI CI hold times. In our implementation, we combine the substeps of
of an orec associated with a memory location read by a transactionSteps 4 and 6 into a single loop, which iterates over orecs in the
is nonzero from the last time the transaction read-validates thatwrite set, for each one performing copybacks for locations covered
orec until the transaction is done copying back the values from its by the orec, and then waiting for the CI to become zero. We also
write set to shared memory. Therefore, a privatizing transaction can perform Step 5 after Step 7, because the sooner a transaction re-
provide the privatization guarantee by simply delaying the return leases an orec, the sooner another can acquire it. We have not yet
from its commit operation until the CI of each orec it owns for experimented extensively with alternative orderings.

writing is zero. Then any transaction that owned any of these orecs
for reading has either finished its copyback phase, or will still
read-validate that orec before committing (and the read validation Various enhancements to the basic algorithm can reduce the cost of
will fail, causing the transaction to abort). In either case, once a updating the Cls.

transaction sees the Cl of each orec in its write set as zero, N0 gyerhead for read-only transactions:Since a transaction must

further writes to a buffer it has isolated can occur. . wait only for conflicting readers that might write to a buffer it has
The following summarizes the steps taken by the new commit g, ateq it need not wait for read-only transactions. Therefore, a

operation that provides implicit privatization: read-only transaction can completely avoid the overhead of updat-

1. (If in lazy acquire mode) acquire write ownership of all orecs ing Cls. Also, a read-only transaction never waits for any ClI to

in the write set in the usual manner (ignoring the Cl fields). become zero since it does not have write ownership of any orec.
Hence, our privatization scheme imposes no overhead on read-only
transactions.

5.2 Cl optimizations

2. For each orec in the read set that is not in the write set, atomi-
cally read-validate it, release read ownership (if necessary), and L) o
increment its Cl. If validation fails, undo any prior increments ~ Scalable committing indicators: Like read indicators, scalable
of Cls, and abort (releasing the orecs owned for writing) and efficient committing indicators can be implemented using Su-

perSNZI [9] (see Section 4). When using such Cls, however, it may

ot always be possible to atomically validate the orec and update
he corresponding ClI, as described in Step 2 of the commit opera-
tion® If so, it is important to perform the update of the correspond-

3. Change status from Active to Committed; if this fails, decre-
ment Cls incremented in Step 2 and release each orec owne
for writing.

4. Copy values from the write set back to shared memory. ing CI beforethe orec is read-validated. Otherwise, there would
5. Decrement the Cls incremented in Step 2. be a window between the time the orec is read-validated and the
.] o) time the Cl is updated, in which an isolating transaction may ac-
6. For each orec owned for writing, wait until its Cl is zero. quire write ownership of the orec and commit successfully, without
7. For each orec owned for writing, release write ownership. waiting for the reader to finish its updates to the isolated buffer,

] and without causing that reader to abort (as the reader has already
The substeps of Steps 4 through 7 need not be executed in theyajidated the orec). Updating the CI before validating the orec guar-

order shown. However, some constraints are necessary: First, eac antees that a writer will always wait for all conflicting readers that
substep of Step 4 must occur while the transaction has write own-mjght still be copying values back to memory.

ership of the appropriate orec (i.e., between the corresponding sub-)) _
steps of Steps 1 and 7). Second, all substeps of Step 4 must oc5.3 Interaction with hardware transactions

cur before any substep of Step 5. Otherwise, the transaction mightoyr privatization algorithm is designed for the SkySTM runtime,
allow a privatizing transaction to complete before this transaction \yhich enables hardware and software transactions to run concur-
completes its copybacks. Third, each substep of Step 6 must occUlrently. SkySTM guarantees that hardware and software transactions
after the corresponding orec has been acquired for writing in Step do not violate one another's atomicity by having a hardware transac-
1 (or earlier, in an eager-acquire STM). Otherwise, another trans-tjon read STM metadata to detect any conflicts with software trans-
action may increment the Cl and proceed to its copyback phaseactions. If a conflict is detected, the hardware transaction aborts it-
after this transaction found the Cl to be zero. Checking the Cl after se|f. Otherwise, because the metadata is checked as part of the hard-
write ownership has been acquired prevents this because the othejyare transaction, the transaction can commit only if the metadata
transaction will fail to read-validate the orec when it attempts t0 §pes not change before the hardware transaction commits. Thus,
increment CI. Fourth, each substep of Step 6 must occur before theyyhen a hardware transaction does commit successfully, it is guar-
corresponding substep of Step 7 for the same orec. Otherwise, thisanteed that there is no conflict with any software transaction.
transaction may be starved by a series of transactions that read the Hargware transactions cannot violate the privatization guaran-
yalue after this transaction_wro_te itand kee_p the CI nonzero as FhQYtee by writing to a buffer isolated by softwaretransaction, be-
increment and decrement it. Finally, to achieve the proxy privatiza- cause the software transaction causes any hardware transaction that
tion property discussed in Section 5.5, Step 6 nensirelyprecede may access the isolated buffer to abort when the buffer is isolated.
Step 7. This prevents another transaction from reading a locationTherefore, to provide the privatization guarantee when hardware
written by a privatizing transaction before the privatizing transac- transactions are involved, the only additional guarantee we need is
tion has done all waiting needed to ensure the buffer is privatized. that if ahardwaretransaction isolates a buffer, that buffer will not
Despite these constraints, there are many options for ordering |ater be written by a software transaction. Unfortunately, we cannot
the substeps in this algorithm. Several considerations apply. First,se the same solution that is used by software transactions (waiting
the main point of the Cls is to reduce the amount of time a priva- for Cls to be zero), because once a hardware transaction observes
tizing transaction must wait for a conflicting reader. This suggests nonzero Cl, it will be aborted when the CI changes. Therefore, for
decrementing Cls as soon as it is safe to do so, as shown abovenardware transactions, we simply abort the hardware transaction if
Similarly, delaying waiting steps allows more time for the waited- t needs to write to a location whose corresponding Cl is nonzero
for condition to become true, while other useful work continues to (this additional test adds no overhead because the orec for each lo-

be perfo_[)rlned. This suggests waiting for Cls to become zero as latecation to which the transaction writes is checked in any case).
as possible.

On the other hand, some loops may be combined, which may im-8 For example, for an STM with invisible reads, performance kslyi to
prove single-threaded performance at the cost of slightiseased dictate that the CI should not be colocated with the restefiiec.

5.4 Using our solution with in-place writes is not private, and another transaction subsequently privatizes that
With an STM that uses in-place writes, it is not true that transactions 2uffer, writing the location read by the first transaction, and then
can only write to an isolated buffer after they have committed writes that b_uffer nontransactlonal_ly, t_hen the first transaction (r_10w
successfully. It is still true, however, that such a transaction must ?hoomedf?_ntwlgrhﬁ regd dthe nevrlyzgnvatlz_sd buﬁﬁr_Wlthoqttdettectmg
have read something written by the isolating transaction, and hence e conflict. ‘The Ord varian .[] avoids such inconsistent reads

of privatized buffers by requiring a transaction to revalidate its en-

that the writing transaction is no longer valid once the isolating . .

transaction hags’ committed successfngIJy. Therefore, we can provi%etlre read set When_ever the global Version number ‘Fhaﬂges- SkySTM

the privatization guarantee as follows: does not have this probler_n because its read v_alldatlon guarantees

that all values read are valid and mutually consistent at some point
¢ A transaction increments the appropriate Cl immediately after during the read validationAs reads from a privatized buffer are

the read operation, and decrements it after it has executed allperformed only by doomed transactions, the read validation opera-
writes to shared data (including writes whose purpose is to undo tion that follows the first read from the isolated buffer will detect
the writes done by an aborted transaction). that the transaction is doomed, and abort it.

* Similar to the solution for an STM with deferred writes, once proxy privatization For ease of exposition, the descriptions above
it commits successfully, a transaction waits until the Cls corre- focus on the case in which a thread uses a transaction to privatize
sponding to its write operations become zero. a memory buffer and then accesses the buffer nontransactionally
_after the transaction completes. However, privatization need not
be so direct—one thread might use a transaction to privatize a
buffer for another. We call this scenagpooxy privatization In this
case, a stronger guarantee is needed: latent writes to the privatized
buffer must be prevented even before the privatizing transaction
completes its commit, because the other thread may access the
buffer before then. Our algorithm and (our implementation of) Ord
both guarantee that this idiom works correctly.

Doing this guarantees that a successfully committed isolating trans
action waits until all transactions that have read memory that
the isolating transaction has subsequently written (and are thus
doomed) find out that they are aborted and finish undoing all their
write operations, hence providing the privatization guarantee.

The optimization for read-only transactions can also be applied
to this variant, by deferring increments to the Cls until the first write
operation by the transaction is executed.

This variant is unlikely to scale as well as the deferred-writes | remains to be seen exactly how ongoing efforts to precisely de-
variant, as a transaction must wait until all transactions with which na language semantics for use with transactions will address the
it has a write-read conflict validate their read sets, find out that they privatization problem. However, it seems clear that useful language
are aborted, and undo their writes. In particular, the solution for gemantics for contexts in which nontransactional memory accesses
in-place writes may entail waiting for arbitrary user code to finish 1, previously transactional data are desirable or unavoidable must
executing before the next read-validation is executed. On the otherqjay the undesirable behaviors that comprise the privatization
hand, this solution will probably still scale better than a solution rohlem. We therefore believe that the scalable privatization guar-
based on quiescence [14],_Wh|ch waits aklirr_unnlng transactions antee made by SkySTM—and the mechanisms we have introduced
to read-validate, and requires reading their snapshots of a globali, achieve it—are likely to be useful in implementing whatever lan-
counter, entailing significant coherence traffic [32]. guage semantics are eventually specified.

5.5 Stronger privatization guarantees 5.6 Evaluation

By using the privatization mechanism as presented so far, and byin this section we examine the cost of supporting privatization by
read-validating after every transactional read, SkySTM avoids both comparing the performance of SkySTM to a variant with priva-
kinds of privatization problems identified in [20], namely delayed tization disabled, as well as comparing TL2 to the privatization-
cleanup and doomed transactions. Nonetheless, in some cases, #nabled Ord variant [20]. Figure 4 presents the throughput of
may be desirable to provide a stronger privatization guarantee sothe HashTable benchmark (regular version, no indirecfidfr
that transactions do not perform everadsfrom an isolated buffer SkySTM, both versions scale similarly, with the privatization so-
after the isolating transaction commits. This guarantee is not pro-|ytion paying a relative overhead of around 4% across the board.
vided by our solution: it does not wait for all conflicting aborted This demonstrates one of the most important advantages of our
transactions to finish, and hence these transactions may read theygorithm: when the application scales, so does our privatization
buffer after they are aborted. Such a transaction is guaranteed t0a|gor|thm In contrast, the Ord algorithm pays dearly for privati-
abort before returning to user code, so there is no risk of return- zation, scaling substantially worse than TL2-GV4. As explained
ing inconsistent data. However, once a thread has isolated a bufferearlier, the modifications to TL2-GV4 to achieve the privatization-
it may deallocate its memory. Subsequently, the operating systemsafe Ord algorithm cannot be applied to TL2-GV6.
may deallocate the page containing that memory, so accessing it, We do not claim that our privatization algorithm is almost free,
even just by reading it, could cause the program to crash. only that its cost is small when contention is low. As contention
One approach to providing this stronger guarantee is to use arises, our privatization solution will likely require more transactions
transaction-aware memory management system [14], which canto wait for each other, and hence its overhead is likely to increase.
then employ explicit privatization barriers [27]. Such a solution Tg evaluate our solution with different levels of contention, we
is acceptable if allocation/deallocation is relatively infrequent. A measured the privatization overhead with a red-black tree bench-
simpler approach for some environments is to use nonfaulting loads mark, using different key ranges (and tree sizes) to control con-
to guarantee that reading from a buffer that was freed will not cause tention levels. In all experiments, the tree is initialized with half
aruntime error. the keys of the tested range, and in each iteration a thread chooses
Avoiding transactional reads of privatized buffers also avoids hether to insert, delete, or lookup a random key with distribution
the doomed transaction problem in TL2, which is susceptible to this
problem because fast read validation in TL2 guarantees only that71ps penchmark has little contention and no memory is actuaigfized.
the |0Cat|0n be|ng I’ead-vahdated haS not been ertten by anotherWe are |00king at the cost of enab“ng an app"cation to In'z'memory_
transaction since the reading transaction began. Thus, if one transprivatizing memory has no cost itself other than the cost ottlicts it
action reads a location to determine that a particular memory buffer may introduce.

[4] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronso

40000 SkySTM —»— J. Casper, C. Kozyrakis, and K. Olukotun. An effective hgbri
SkySTM-Priv. —*— transactional memory system with strong isolation guarantée
35000 | TL2-GV4 1 ISCA Jun 2007.
2] 30000 + TL2-Ord | [5] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
% D. Nussbaum. Hybrid transactional memory ABPLOS2006.
8. 25000 | 1 [6] D. Dice, November 2008. Personal communication.
~ [7] D. Dice, O. Shalev, and N. Shavit. Transactional lockingn DISC,
S 20000 f 1 2006.
f:" [8] D. Dice and N. Shavit. What really makes transactions f&stie
> 15000 r 7 1 Transact 2006.
e ’ 4 [9] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalationzero
|-E 10000 r 1 indicators. InPODC, 2007.
5000 | A [10] P. Felber, C. Fetzer, and T. Riegel. Dynamic performanoéy of
word-based software transactional memoryPFoPPR, 2008.
o [11] G. Grohoski. Niagara-2: A highly threaded server-echip. Hot
116324864 96 128 192 256 Chips 18, 2006.

[12] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer li§oftware

- - —— transactional memory for dynamic-sized data structure?ODC,

Figure 4. Performance cost of enabling privatization. 2003.

HashTablekeyrange= 128 000, 50% insertions, 50% deletions. [13] M. Herlihy and E. Moss. Transactional memory: Architeatu
support for lock-free data structures.|BCA 1993.

[14] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C.tkleerg.
McRT-Malloc: A scalable transactional memory allocator.|$vM,

Number of threads

2:2:6. The results of these experiments (that we omit due to lack of
space) show that the privatizatiomerheadf our solution strongly
depends on the Iev_el O.f antentionf Wi.th all t"?e sizes, the run-time of transactions using best-effort hardware transactiorehory. In
overhead of our privatization solution in the single-thread run was PPoPP, 2008.

approximately 3%. With 256 threads, this overhead increases t0 [16] v. Lev and M. Moir. Fast read sharing mechanism for sofeva
11.8% with a 128,000 key range, and to 35% with a smaller 1,600 transactional memory. IRODC, 2004.

key range. On the other hand, the overhead of the Ord algorithm [17] v. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transaztio
(comparing to the TL2-GV4 variant) is over 1000% in the 256- memory. InTransact 2007.

thread run withboththe 1,600 and 128,000 key ranges. [18] V. Marathe, W. Scherer, and M. Scott. Adaptive softwaaesactional
memory. InDISC, 2005.

i [19] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eistat, W. N.
6. Concludlng remarks Scherer Ill, and M. L. Scott. Lowering the overhead of nocking

We have presented SkySTM, the first STM system that can scale software transactional memory. Timansact 2006.

to hundreds of threads across multiple multicore chips. The key to [20] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable tégpines for
achieving scalability is a focus on conflict-based synchronization so transparent privatization in software transactional membryCPP,
that, given a scalable application with few conflicts, the STM will
not introduce contention on metadata that will impede scalability.
The key mechanisms we used to achieve this are:

[15] Y. Lev and J.-W. Maessen. Split hardware transactitog nesting

[21] M. Olszewski, J. Cutler, and J. Steffan. JudoSTM: A dyiabinary-
rewriting approach to software transactional memoryPACT, Sept.
7.

22] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing trans@éenal memory.
In ISCA 2005.

[23] T. Riegel, C. Fetzer, and P. Felber. Time-based traissitmemory
with scalable time bases. BPAA 2007.

[24] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minhda
B. Hertzberg. McRT-STM: A high performance software trarsac

e a novel conflict-based implicit privatization algorithm that is tional memory system for a multi-core runtime. RPoPR, 2006.
integrated with the mechanisms above to avoid synchronization [25] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architel support

between transactions that do not conflict at the application level. ~ for software transactional memory. MICRO, 2006.
[26] N. Shavit and D. Touitou. Software transactional memémpPODC,
1995.

s - . [
e semivisible reads for containing the overhead of ensuring con-
sistent execution;

¢ scalable non-zero indicators (SNZIs) to make read sharing with
semivisible reads scalable; and

SkySTM, which we are making available as an open-source li-
brary [1], is part of a hybrid transactional memory system that can [27] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scot
exploit best-effort hardware transactional memory to boost perfor Privatization techniques for software transactional memtegghnical

. . o Report 915, Univ. of Rochester, 2007.
mance. While we are pleased with the scalability of SkySTM, many)
opportunities to improve it remain. In particular, further reducing 28] M. F. Spear, V. J. Marathe, W. N. S. lll, and M. L. Scott. riiet

; LA s . detection and validation strategies for software tramsaat memory.
overhead while maintaining scalability is an important goal. In DISC, 2006.

[29] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: &bk
transactions with a single atomic instruction.SRAA 2008.
[30] The TL2 library. http://research.sun.com/scalable.

[31] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D.lH
M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling hardware
transactional memory from caches.HIPCA 2007.

Acknowledgments: The authors wish to thank Dave Dice and Nir
Shavit for useful discussions. They also identified the problem that
came to be known as the privatization problem [8].

References

[1] http://research.sun.com/scalable/.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leisersamd
S. Lie. Unbounded transactional memoryHRCA, Feb. 2005.

[3] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware nrgmo

protection to build a high-performance, strongly-atomic fiyb
transactional memory. IF5CA 2008.

[32] R. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, aHd-H. Lee.
Kicking the tires of software transactional memory: Why thengoi
gets tough. IrSPAA 2008.

