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Abstract

Sorting is a fundamental algorithm used extensively
in computer science as an intermediate step in many
applications. The performance of sorting algorithms
is heavily influenced by the type of data being sorted,
and the machine being used. To assist in obtain-
ing portable performance for sorting algorithms, we
propose an install-time system for automatically con-
structing sequential and parallel sorts that are highly
tuned for the target architecture. Our system has two
steps: first a hybrid sequential divide-and-conquer
sort is constructed and then this algorithm is par-
allelized using a shared work-queue model. To evalu-
ate our system, we compare automatically generated
sorting algorithms to sequential and parallel versions
of the C++STL sort. The generated sorts are shown
to be competitive with STL sort on sequential sys-
tems and to outperform the parallel STL sort on a 4
processor Xeon server.

Keywords: Parallel sorting algorithms, install-
time optimization, Hyperthreading

1 Introduction

Sorting is a fundamental procedure in the modern
world. It is used extensively in computer science as
an intermediate step in many algorithms, and, in to-
day’s information oriented world, sorting facilitates
easy and efficient retrieval of data. While much at-
tention has already been devoted to sorting, larger
data sets are opening doors for further improvement,
especially in the rising domain of parallel computing.

As with most algorithms, the performance of sort-
ing algorithms is heavily influenced by the type of
data being sorted, and the machine being used. As
such, there is potential for improving sorting times
by automatically generating algorithms that are spe-

cific to particular data sets and architectures. This
approach allows for maximum portability without
compromise in performance. In similar work, re-
searchers have created systems to automatically con-
struct machine-specific versions of the BLAS routines
[WPDO01] and FFT libraries [FJ98].

In this paper, we propose an install-time system for
automatically constructing optimized parallel sorting
algorithms for small-scale symmetric multiprocessors
(SMPs). This construction is performed in two steps.
First, a high-performance sequential sort is composed
by combining multiple sorting algorithms into a single
divide-and-conquer algorithm. Next, a parallel sort is
created by parallelizing this divide-and-conquer algo-
rithm. In both steps, machine-specific decisions are
made to reduce overheads and optimize performance.

This paper makes the following contributions: (1)
we present a fully-automatic, install-time system for
generating tuned sequential and parallel sorts for
small-scale SMPs, (2) we show that our self-tuned
sequential sorting algorithm is competitive with the
C++STL sorts on 3 target systems, and (3) we show
that our parallelized sorting algorithm outperforms
parallelized versions of the C++STL sort.

2 Sorting Algorithms

2.1 Sequential Sorting

The problem of sequentially sorting data has been
studied for decades. In The Art of Computer Pro-
gramming V.3, D. Knuth [Knu98] does a comprehen-
sive study of 25 such algorithms, discussing which
are most appropriate for different sets of data struc-
tures, output requirements, and physical storage me-
dia. Sorting algorithms can be categorized into two
sets: comparison and non-comparison based. Us-
ing a decision tree model, it is possible to prove that
there exists a lower bound of Q(nlogn) for comparison



based sorting algorithms [CLRS01]. Insertion sort,
quick sort and merge sort are examples of comparison
sorts. Non-comparison sorts, such as bucket sort and
radix sort, provide sorting in linear time, but require
knowledge of the bounds of the input data. In this
paper, we consider only the more general comparison-
based sorts.

The simplest comparison algorithm is insertion
sort. It has a worst case complexity of O(n?). Divide-
and-conquer algorithms perform much better asymp-
totically than insertion sort. These algorithms take
the task of sorting, and divide it into sub-problems.
Then, with recursion, these subproblems are sorted
using the same algorithm. Both quick sort and merge
sort are examples of divide-and-conquer algorithms.

Much of the work done on both sequential and
parallel sorting algorithms has focused on finding al-
gorithms with small asymptotic bounds. However,
asymptotic bounds only express the order of growth
of the execution time of an algorithm, not the hidden
constant factors and lower-order terms. For example
even though insertion sort is O(n2), its low constant
factor allows it to sort faster than merge sort and
quick sort for small data sets.

Furthermore, merge sort and quick sort are of
divide-and-conquer type, which means that they can
benefit greatly by calling insertion sort when they en-
counter small data sets after many successive recur-
sive calls. We call sorts that make use of multiple
sorting algorithms hybrid sorting algorithms. The
std::sort and std::stable sort functions in the
C++ Standard Template Library are often imple-
mented as complex hybrid algorithms. For example,
the Gnu versions of these two algorithms use prede-
termined cutoff points to switch between heap sort,
quick sort, merge sort and insertion sort algorithms.

2.2 Parallel Sorting

There have been a number of parallel sorting algo-
rithms proposed specifically for parallel machines.
Ideally, a parallel sorting algorithm could achieve an
asymptotic complexity of O("l"%), where p is the
number of processors. Given p = n, such a parallel
sort would be O(logn). A number of parallel sorts,
such as Column sort [Lei85, CCWO01], have demon-
strated this bound. However, these explicit parallel
sorts often have high hidden constants and therefore
only perform well with large lists on large numbers
of processors. At low numbers of processors or small
list sizes, parallelized versions of sequential sorts often
outperform these explicitly parallel sorts [AJRT01].
In this paper, we target the small-scale SMP sys-
tems that are becoming increasingly commonplace,
and therefore focus on shared-memory parallel sorts

adapted from sequential sorts, as described in the
next section.

2.3 Parallelized Sequential Sorts

A second method of programming parallel sorting
algorithms is to parallelize divide-and-conquer algo-
rithms. These algorithms may be parallelized by hav-
ing subproblems enqueued into a shared work-queue.
As threads need work, they remove tasks from the
work-queue, and add new tasks to the queue as new
subproblems are defined. This shared work-queue
provides natural load balancing. Since there is over-
head associated with the enqueuing and dequeuing
tasks, there is a cutoff point beyond which it is more
efficient for a thread to simply execute the sub tasks
that it generates instead of adding them to the shared
work queue. The optimal point of the change from
enqueuing work to continuing locally is data set and
architecture specific.

3 An Adaptive Sort

An overview of our proposed system is shown in Fig-
ure 1. It has two basic phases: (1) construction of
the optimized sequential sort decision tree and (2)
selection of a work-sharing cutoff point.

3.1 Sequential Sort Decision Trees

There exist a number of very good sequential sorting
algorithms. Because many of these are divide-and-
conquer algorithms, it is possible to combine them
into one hybrid sorting algorithm. In order to achieve
maximum performance, the points at which switch-
ing between different algorithms takes place should
be chosen such that the most appropriate sorting al-
gorithm be used at each recursive call. These switch-
ing points can be empirically determined by running
experiments on the targeted architecture with sam-
ple data that best matches the expected data in both
type and entropy. Omnce the sampled performance
is examined, a decision tree can be constructed. The
optimized sorting algorithm will then consult this de-
cision tree during its sorting processes to select the
sort that is best to use at each recursive step.

As shown in Figure 1, our system begins by sam-
pling the performance of hybrid sorts by sorting
many different random data sets, each varying in size.
These hybrid sorts are generated by randomly choos-
ing between the sorting algorithms described in Ta-
ble 1 at each recursive step. During these runs, the
time that it takes to complete the work at each re-
cursive level is measured. This time includes all of
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Figure 1: Install-time optimization process

the work performed in the current call but not any
of the recursive calls made from it. For example for
merge sort, this time would include the merging of
the sublists at this step, and for quick sort this would
include the time to shuffle the data elements around
the pivot point.

In order to ensure an even distribution of timing
data for all input array sizes, training is done on 5
different brackets of random input sizes, with a max-
imum size of 10 million elements. To make the tests
feasible, insertion sort—due to its O(n?) complexity—
has to be ignored for arrays with more than one thou-
sand elements. Furthermore, partial sorts are carried
out in the largest three brackets (arrays larger than
one hundred thousand) preventing many repetitive
timing runs for small arrays. The point at which
sorting is stopped is varied from bracket to bracket.

Next, for each list size, the best choice to make
at each recursive step is determined. To do this, a
dynamic programming approach [CLRS01] is used to
find the best sorting algorithm for each data set size,
given that the best choice was carried out in subse-
quent recursive calls. Once a list of optimal choices
is generated, data-mining software (c4.5 [Qui93]) is
used to generate a decision tree. c4.5 generalizes the
data obtained from the sampling, yielding small deci-
sion trees in place of the large mappings between list
sizes and best algorithms.

The tree obtained in this step is converted into
nested if/else C++ statements. Using template spe-
cialization, the decision tree is embedded in a sorting
algorithm for the specific data type used in the data
gathering process. This generated sorting algorithm
is the optimized sequential Adaptive Sort for this data
type on this architecture, and does not contain the
high-overhead decision making and instrumentation
code used during the sampling phase.

3.2 Work-Sharing Cutoff Point

The sequential optimized sorting algorithm is a
divide-and-conquer sorting algorithm that calls a de-
cision function to select an algorithm at each step,
rather than call a fixed sorting algorithm. In the par-
allel sorting algorithm, the decision function is aug-
mented to make two decisions: (1) what sorting al-
gorithm should be used for this data set size and (2)
whether the resulting sub-task(s) should be placed in
the shared work-queue for execution by any thread
or executed immediately by the current thread.

The first decision is made by referring to the se-
quential decision tree. This decision tree need not
change, since our parallel algorithm continues to use
the same sequential algorithms *.

There is overhead associated with adding and re-
moving tasks from the shared work-queue. In order
to ensure balanced work loads between threads while
avoiding high overheads, an optimal cutoff point, at
which all recursive calls continue within the current
thread, has to be obtained. The second phase of our
install-time system measures the time it takes to sort
sample data at varying work-sharing cutoff points.

Figure 2 displays the effect of changing the cutoff
point. It can be seen from the sharp increases in
sorting time that there is a small region of acceptable
cutoff points. Once enough data is sampled, it is
possible to generate a second decision tree that can
be used to decide on a optimal cutoff point for given
input sizes. Our optimized parallel sort uses such a
tree before the sorting process to determine the best
cutoff point for the input array, which is then used in
its decision function to determine whether subtasks
should be enqueued or executed immediately by the
calling thread.

1Some of the parallel versions of sequential sorts include
synchronization constructs, but we have found in practice that
the overhead of these constructs is minimal and does not
change the decision tree found for the sequential algorithm.



Algorithm

Description

Insertion Sort

O(n?) but with small lower order terms. Efficient for small lists.

than merge sort.

Merge Sort O(nlgn). Subtasks are evenly divided but has higher lower-order terms than
quick sort.
Quick Sort O(nlgn) on average, but is O(n”) worst-case. Has smaller lower-order terms

In-place Merge Sort

O(nlgn). Higher constant coefficient than merge sort, but can still be competitive,
especially when sorting sets of size near an integral power of two.

Heap Sort

O(nlgn). Non-recursive nlgn algorithm. Can do well on medium sized lists. Higher
lower-order terms than quick sort.

Table 1: The sorting algorithms available to the optimized hybrid sort.

Sorting Time / Seconds

Array Size /

Work-Sharing Cutoff / 10 6
x 10

x10°

Figure 2: Times for work-sharing cutoff points.

4 Evaluation

4.1 System & Methodology

In the evaluation of our system, we perform both se-
quential and parallel experiments. Sequential tests
were carried out on various architectures and operat-
ing systems. These include Linux 2.4.18 on an Intel
Pentium IV XEON 1.6GHz processor, Linux 2.4.24
on an AMD Athlon XP 1700+ and SunOS 5.8 on a
Sun Sparc workstation 600MHz. All parallel tests
were carried out on a four processor Intel Pentium
IV XEON 1.6GHz SMP with Hyperthreading sup-
port. A modified Linux 2.4.18 kernel was used to
allow thread bindings.

Gnu G4+ version 2.96 std::sort and
std::stable_sort functions were used in the
construction of parallel algorithms for comparison.
Since these algorithms are quite complicated, it
was not possible to easily employ the same work

queue framework used with the self-tuning sort.
Instead, seven merge sorts were used to incremen-
tally divide the array by two, passing the result to
new threads until 8 equally sized subproblems were
created. These were then given to std::sort or
std::stable_sort.

In cases where pre-sorted data was used, it was
generated by inserting numbers, proportional to posi-
tion, into an array that was filled with random data.
These numbers ranged from 1 to RAND_MAX so that
they spanned the same range as the random num-
bers.

4.2 Sequential Sort Results

Figures 3(a) - 3(f) present an evaluation of our op-
timized sequential sort compared to several other se-
quential sorting algorithms. All of the sorts presented
in Figure 3 are templated, but due to space con-
straints we show only the results for doubles. We ex-
perimented with other data types as well, and found
the trends to be the same. Since these sorts are tem-
plated, the algorithms are instantiated in the appli-
cation code at compile-time. We therefore show both
the case when the user is compiling with no optimiza-
tion and with -O2.

Our install-time created sequential sort is labelled
“Adaptive Sort” in Figure 3, and is competitive with
STL sort on all platforms. In the non-optimized case,
our automatically constructed hybrid sort is better
than STL sort on two of the architectures. STL
sort is not a simple hybrid sort, but contains highly-
tuned and partially iterative versions of quick and
merge sorts. This makes STL not only highly effi-
cient, but also difficult to parallelize, as mentioned
in Section 4.1. That our straightforward recursive
hybrid sort, designed to be easily parallelized using
a work-queue model, competes with STL on all se-
quential architectures is therefore quite impressive.

It is also interesting to note, that our Adaptive
Sort is composed of the other non-hybrid sorts pre-
sented in Figure 3. However, of the non-hybrid sorts,
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Figure 3: Comparison of Sequential Sorting Algorithms. Random data of type double

only quick sort is competitive with our automatically
tuned sorting algorithm. This demonstrates that in
most cases the combination of multiple sorts yields an
improvement over an one single sorting algorithm.

4.3 Parallel Sort Results

Our install-time system presented in Section 3 uses
sequential sorts as the basis for its parallel algorithms.
In this section, we evaluate the performance of the
parallel sorting algorithm generated for our 4 proces-
sor Xeon server described in Section 4.1. The perfor-
mance of the sequential Adaptive Sort on the Xeon
server are shown in Figures 3(c) and 3(f). Figures
4(a) - 4(f) show the performance of the parallelized
version of this Adaptive Sort.

Figure 4 show results only for doubles, although
the trends in the data are the same for other primi-
tive data types. In Figure 4, random, 90% pre-sorted

and fully sorted data sets are used for both the non-
optimized and optimized cases. In all the non-fully-
sorted cases, the Parallel Adaptive Sort outperforms
all others.

The scalability of our Adaptive Sort, shown in Fig-
ure 5, is excellent. A speedup greater than 4 can be
noted in the optimized case when using 8 threads on
the 4 physical processors of our Xeon. While a Hy-
perthreaded processor can execute multiple threads
simultaneously, these threads share the functional
units of the processor. In computationally-intense
applications, this sharing of resources often leads to
a degradation when multiple threads are used. Thus,
a speedup greater than 4 on 4 physical processors is
impressive.

In addition, the parallel STL sorts, which use an
8-way merge sort to call STL and Stable STL sorts,
do not scale as well as our Adaptive Sort, as shown
in Figure 4. The complicated nature of the STL sort
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Figure 4: Comparison of Parallel Sorting Algorithms. All results are obtained using 8 threads except “Parallel
Adaptive Sort (4 Threads)”, for which 4 threads are used, and “Adaptive Sort”, which is sequential.

does not allow a work-queue model to be easily in-
corporated, and therefore the parallel versions suffer
from load imbalance.

The Parallel Quick Sort shown in Figure 4 is, how-
ever, able to employ a work-queue model. This algo-
rithm uses the partially iterative implementation of
quick sort used by the Gnu STL sort, and therefore
represents a highly tuned algorithm. In addition, we
hard-coded the work-sharing cutoff point found by
our Parallel Adaptive Sort into Parallel Quick Sort.
Without this cutoff point, the Parallel Quick Sort
was an order of magnitude slower than our Parallel
Adaptive Sort. Therefore, the performance of Paral-
lel Quick Sort shown in Figure 4 is obtained by using
machine-specific knowledge not usually available to a
static algorithm. Even so, our Parallel Adaptive Sort
is able to outperform this highly-tuned quick sort for
most data points on non-fully-sorted data. Further-

more, this slight performance hit observed with fully-
sorted data can be attributed to the fact that all the
Adaptive Sorting algorithms were trained on random
data only. Thus the Adaptive and Parallel Adaptive
Sorts generated by our install-time system, are shown
in Figures 3 and 4 to be highly efficient in comparison
to other sequential and parallel sorts.

5 Related Work

There are several other systems that have used com-
posable algorithms to construct a target-specific opti-
mized algorithm at install-time. The ATLAS project
[WPDO01] samples matrix computations at install-
time to construct a tuned version of the BLAS li-
braries for the target architecture. ATLAS moni-
tors performance to create a cache-contained multi-
ply that is used to construct the larger matrix com-
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putations provided by the BLAS library. In a simi-
lar vein, the FF'TW library creates at install-time a
plan for combining composable solvers for computing
FFTs. FFTW determines and uses machine and com-
piler characteristics to develop this plan, allowing its
FFT computations to perform well across architec-
tures. Our system like ATLAS and FFTW, uses the
idea that divide-and-conquer sorting algorithms can
be composed from multiple algorithms, and finds the
best sorting plan for a given architecture at install-
time.

Most closely related to our work is the STAPL
Adaptive Parallel C++library [AJRT01]. STAPL
provides a range of parallelized template functions
from the C++Standard Template Library, including
sorts. Similar to our system, a decision tree for select-
ing an algorithm is created at install-time. However,
STAPL does not compose a sorting plan, but instead
picks a single sorting algorithm to be used to sort the
entire data set based on the size of the data and the
number of processors. Qur system creates a hybrid
algorithm that may switch sorting algorithms as sub-
problems decrease in size. STAPL was not available
at the time of our evaluation to make performance
comparisons.

6 Conclusion

In this paper, we proposed an install-time system
for automatically constructing sequential and parallel
sorts that are highly tuned for a target architecture.
Our system has two steps: first a hybrid sequential
divide-and-conquer sort is constructed and then this

algorithm is parallelized using a shared work-queue
model. To evaluate our system in Section 4, we com-
pared automatically generated sorting algorithms to
sequential and parallel versions of the C++STL sort
as well as other representative sorting algorithms.
The generated sorts were shown to be competitive
with STL sort on sequential systems and to outper-
form the parallel STL sort on a 4 processor Xeon
server. On the 4-processor Hyperthreaded server, our
Parallel Adaptive Sort was able to achieve a speedup
of greater than 4 when using 8 threads. Our au-
tomated install-time system was therefore shown to
compose highly efficient sorting algorithms for both
sequential and parallel systems.
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