Walther Recursion

David McAllester! and Kostas Arkoudas?

! AT&T Labs, 600 Mountain Ave, Murray Hill N.J. 07974, dmac@research.att.com,
(908)582-5412
2 MIT Artificial Intelligence Laboratory, 545 Technology Square, Cambridge MAss.
02139, koud@ai.mit.edu

Abstract. Primitive recursion is a well known syntactic restriction on
recursive definitions which guarantees termination. Unfortunately many
natural definitions, such as the most common definition of Euclid’s GCD
algorithm, are not primitive recursive. Walther has recently given a proof
system for verifying termination of a broader class of definitions. Al-
though Walther’s system is highly automatible, the class of acceptable
definitions remains only semi-decidable. Here we simplify Walther’s cal-
culus and give a syntactic criterion on definitions which guarantees termi-
nation. This syntactic criteria generalizes primitive recursion and handles
most of the examples given by Walther. We call the corresponding class
of acceptable definitions “Walther recursive”.

1 Introduction

One of the central problems in verification logics, such as the Boyer-Moore the-
orem prover [2], [10], is the need to prove termination for recursive definitions.
Many logics, such as that of Boyer and Moore, assume that all function symbols
define total functions. Even in systems where partial functions are allowed, such
as the IMPS system [11], proofs of termination are still important. For exam-
ple, proving a lemma of the form Vz f(z) > z will still require proving that f
terminates.

Some definitions can be proved to terminate by translation into a term rewrit-
ing system and the application of standard term rewriting techniques [4, 3]. Un-
fortunately, all automated systems for termination analysis for rewrite systems
use well founded term orders such that u < v implies f(...u...) < f(...v...)
and v < f(...u...). There are many natural functional definitions where ter-
mination can not be verified with any such ordering. For example, under the
natural definition of Euclid’s GCD algorithm we have

GCD(6, 2) — GCD(MINUS(6, 2), 2).

By the above properties we must have 6 < MINUS(6, 2) and GCD(MINUS(6, 2), 2) <
CGD(6, 2). The problem here is the use of orderings on terms rather than order-
ings on values. Clearly the value of MINUS(6, 2) is smaller than 6.

The Boyer-Moore prover allows termination proofs based on user-defined or-
derings. The orderings must be proved to be well founded and every recursive

call must decrease a specified measure argument according to the user-defined
ordering. This allows for termination proofs of a very large class of recursive
definitions. Unfortunately, it also requires considerable user interaction both in
defining an appropriate well founded order and in proving that the order is de-
creased on recursive calls. Such user interaction often requires an understanding
of the internal machinery of the theorem prover and can be quite difficult for
naive users.

Primitive recursion is a well known syntactic condition which ensures termi-
nation. Although primitive recursion was originally formulated for the natural
numbers, it has a natural generalization to the Herbrand universe of first order
terms. With this simple generalization a wide variety of functions can be given
natural primitive recursive definitions. For example, the natural definitions of
the Lisp functions APPEND, REVERSE, MEMBER, UNION, and FLATTEN are all prim-
itive recursive. Unlike sophisticated termination analyses, primitive recursion is
a simple syntactic property easily checked by the programmer.

Unfortunately, many functions, such as the greatest common divisor and a
variety of sorting functions, do not have natural primitive recursive definitions.
The functions themselves (as opposed to their natural definitions) are primitive
recursive — they can be given unnatural definitions that are syntactically prim-
itive recursive. But the unnatural primitive recursive definitions make formal
verification more difficult. We would like an easy formal proof, for example, that
GCD(z, y) divides both z and y — or that a given sort procedure produces a
sorted list.

Primitive recursion is a syntactic condition ensuring that recursive calls in-
volve smaller arguments. The notion of size is fixed — there is no choice of
ordering. Over the natural numbers one uses the standard notion of size. Over
the Herbrand universe we use the normal notion of size of terms, i.e., number
of subterms.® The natural definitions of GCD and various sorting procedures
do have the property that recursive calls involve smaller arguments — there
is no problem with the fixed value ordering. The problem lies in the syntactic
test ensuring reduction. In the GCD function the recursive call is of the form
GCD(MINUS(z, y),) in a context where we know z > 0 and y > 0. Primitive re-
cursion on natural numbers only allows recursive calls of the form f(PRED(z), ...)
where PRED is the predecessor function and the call occurs in a context where
we know z > 0.

In our formulation of the generalization to Herbrand terms, primitive recur-
sion allows recursive calls of the form f(II.i(z), ...) where II.; is the “projec-
tion” or “selector” function such that IT.;(c(z1, ..., #n)) = @;. This recursive
call must occur in a context where z is known to be an application of the con-
structor ¢. The Lisp functions CAR and CDR are examples of projection functions
and one can verify that, for example, APPEND is primitive recursive. Various sort-
ing algorithms do not have natural primitive recursive definitions. For example,
a natural definition for quick sort has the recursive call SORT(DIFF(CDR(z), v)))

3 A slightly more sophisticated notion of size for Herbrand terms is introduced in
section 4.

where DIFF is the set difference functions (which is itself primitive recursive).
Again, the problem is not the choice of ordering, it is the method of verifying
that the arguments are reduced.

Walther [9] has developed a calculus which is quite effective at deriving as-
sertions of the form u < z where u is a term containing the variable z. For
example, if z and y are nonzero then MINUS(z, y) < z. If z is nonempty then
DIFF(CDR(z), y) < z. The basic idea behind Walther’s calculus is that cer-
tain user-defined functions act as “reducers” and others act as “conservers”.
In the term DIFF(CDR(z), y) < # the function CDR acts as a reducer and the
function DIFF acts as a conserver. More generally, a function f reduces its ith
argument if f(z1, ..., 2,) < z;. Analogously, f conserves its ith argument
if f(z1, ..., zn) < ;. Subtraction reduces its first argument whenever both
arguments are nonzero. The function CDR reduces its argument whenever that
argument is a cons cell. The function DIFF conserves its first argument. Walther’s
calculus is a system for soundly inferring assertions of the form u < z where u
consists of appropriate applications of reducers and conservers.

As given in [9], Walther’s calculus is so rich that determining whether the
calculus derives u < z is undecidable. The contribution of this paper is a syn-
tactic type discipline which captures the essence of Walther’s reducer-conserver
analysis. By “syntactic” we mean an analysis that is both efficiently decidable
and that can be performed by inspection when writing definitions — A program-
mer can easily check whether a given definition satisfies syntactic requirements.
As in other type disciplines, programmers will have to write programs in a cer-
tain style — they must follow the discipline. However, the discipline of Walther
recursion is significantly more liberal than that of primitive recursion.

Walther recursion is a first order type discipline.* The type system is founded
on the concept of a regular data type over the Herbrand universe of terms built
from data constructors. We require that data types be user-specified and that all
procedure definitions be explicitly annotated with input and output types. This
simplifies the system and allows our formulation to focus on Walther’s reducer-
conserver analysis independent of the type inference problem for regular types.
See [1, 6] for algorithms for inferring regular types.

Section 2 describes the concept of a regular type and introduces the class of
“monomorphic” regular types. The monomorphism assumption allows types to
be viewed as disjoint unions of “atomic” types. This disjoint union property plays
an important role in the syntactic analysis of conditional expressions. Section 3
describes our programming language and a basic type analysis. Section 4 gives
a formal presentation of our version of Walther’s reducer-conserver analysis.
Section 4 also gives Walther recursive definitions of GCD and substitution in
the A-calculus. Section 5 gives some examples of Walther recursive definitions of
sorting algorithms.

* However, it should be straightforward to generalize Walther recursion to higher order
types in a manner analogous to Gédel’s system T.

2 Regular Types over Monomorphic Constructors

Our formulation of Walther recursion as a first order type discipline is based on
regular data types. A regular data type is a set of expressions definable by a
grammar. For example, a type N of expressions representing natural numbers
can be defined as follows.

N ::= zero | s(N)
The set of lists of natural numbers can be defined as follows.

LN ::= natnum-nil | natnum-cons(N, LN)

The set of pure A-terms can be defined as follows.

V 1= variable(N)

L ==V | apply(L, L) | lambda(V, L)

Most first order data types have natural definitions as grammars. Formally, a
regular term grammar is a finite set of productions of the form X — u where u is
a term constructed from nonterminal symbols and constructors where constants
are treated as zero-ary constructors. For example, the grammar for natural num-
bers contains the production N — s(N). Each nonterminal of a regular term
grammar generates a set of terms in the obvious way. A set of expressions is
regular if it is the set generated by some nonterminal of some grammar.®

The above grammar includes the productions L — V, L — lambda(V, E)
and V — variable(N). Note that the constructor variable only appears once
in the grammar even though the nonterminal V occurs several times. Grammars
in which every constructor appears at most once have desirable properties.

Definition: A regular term language will be called monomorphic if it
can be defined by a grammar in which each constructor occurs at most
once.

Definition: A monomorphic normal form grammar is a grammar in
which each constructor occurs at most once; every nonterminal symbol
is classified as either an aggregate nonterminal or a constructor nonter-
minal; each constructor ¢ is associated with a unique constructor non-
terminal X.; and all productions are either of the form ¥ — X, or
X. = ¢(Y1, ..., Yn) where Y and each Y; are aggregate nonterminals.

5 Regular types can also be characterized as the term languages accepted by finite
state tree automata [7, 8]. We find the grammar notation clearer. Properties of tree
automata can always be stated directly on grammars. More specifically, a tree au-
tomaton can be defined to be a set of productions of the form X — ¢(Y1, ..., Ya)
where each Y; is a nonterminal symbol. It is not difficult to prove that every gram-
mar can be put in this form. An automaton is top-down deterministic if for ev-
ery nonterminal X and constructor ¢ there is at most one production of the form
X — ¢(Yh, ..., Ya). There are regular languages not definable by top-down deter-
ministic grammars. An automaton is bottom-up deterministic if no two productions
have the same right hand side. Every regular term language can be defined by a
(unique minimal) bottom-up deterministic automaton.

Lemma: Every monomorphic regular term language can be defined by
a monomorphic normal form grammar.

When types are defined by a monomorphic normal form grammar it is possi-
ble to represent types by finite sets of constructor symbols. Type unions, inter-
sections, differences, and subtype tests can then be computed in the natural way
on these finite sets of constructor symbols. Under this scheme an occurrence of a
constructor symbol ¢ in a type represents the language generated by a nontermi-
nal X, in the monomorphic normal form grammar. For distinction constructors ¢
and ¢’ we have that X, and X, generate disjoint languages. Hence operations on
sets of constructors correspond to the analogous operations on the types being
represented. Determining emptiness of an intersection of a set of nonterminals
in an arbitrary (nonmonomorphic) regular term grammar is known to be EXP-
TIME hard [5]. Monomorphic regular types yield a considerable simplification.

Throughout this paper we assume a fixed user declared grammar defining
the types of constructors. The user provides a grammar in which no construc-
tor appears more than once and this grammar is automatically converted to a
monomorphic normal form grammar with a nonterminal X, for each construc-
tor ¢. The term “type” will be used here to mean a finite set o of constructor
symbols representing the monomorphic regular term language generated by the
nonterminals X, for ¢ € . In practice nonterminals in the user-given grammar
can be used to abbreviate the corresponding set of constructor symbols.

A production of the form X, — ¢(Y1, ..., Yn) can be viewed as stating
a type declaration for the constructor ¢, namely ¢: ¥73 x ... x Y, — X. A
monomorphic normal form grammar can be viewed as a set of type declarations
where the output types of distinct constructors are disjoint and where each input
type is a union of (pairwise disjoint) output types. The monomorphic nature of
these type declarations is the source of the phrase “monomorphic grammar?”.

Since the Hindley-Milner type systems used in ML does not allow subtyping,
the type of A-terms given above can not be represented in ML — in ML the type
of variables can not be a proper subset of the type of A-terms. In ML one might
instead represent A-terms by the following grammar.

L ::= variable(N) | apply(L, L) | lambda(N, L)

But this is technically a different type (a different set of Herbrand terms).

3 A Functional Programming Language

There are three kinds of function symbols in our language — constructors, pro-
jection functions, and user-defined functions. Each of these function symbols can
be assigned a “function type” of the form o; X ...Xx o, — 7 where 7 and each o;
are types as defined in the previous section. For a constructor function ¢ we have
c:Y1 x...xY, - X, where the grammar defining types has the production
X, — (Y1, ..., Yp). For each constructor of n arguments there are n projection
functions of the form II.; with 1 < i < n. The function II.; extracts the ith
argument from an application of ¢, i.e., we have IT;;(¢(21, ..., 2a)) = ;. For

each projection II.; we have II.; : X, — Y; where the grammar contains the
production X; — ¢(¥1, ..., Y). Note that the projection function II. ; can only
be applied to applications of ¢. The type of a user-defined function is declared
as part of its definition.

The set of terms of the language is defined by the following grammar

eux=z| f(er, ..., e2) | if(z:ic e1 e2) |let z =e; ine;

Note that the test in a conditional expression is of the form z:c¢ where z
is a variable and c¢ is a constructor symbol. The test is true if the value of
z is an application of c. We will use if(e;: ¢ e e3) as an abbreviation for
let ¢ = e; in if(z:c ez e3) and use if(e; ez e3) as an abbreviation for
if(ej:true ez e3) where true is a constructor constant representing the Boolean
value true.

Figure 1 gives rules for assigning types to terms. The rules involve sequents
of the form p - e: 7 where p is a mapping from variables to types and 7 is a
type. The notation p[z := o] denotes the mapping from variables to types which
is identical to p except that it maps z to the type o. It is important to remember
that types are sets of constructor nonterminals. Note that the IF rule types the
two branches of the conditional under different type environments. The rules
can be be used in a backward-chaining syntax directed way and typability is
decidable in linear time (under a fixed monomorphic grammar).

VAR pt z:p(z) SUB pkerT
TCo
IF plz :={c}] F e1:o
plz := p(z) — {c}] F exic pFeo
p b if(z:c e1 e2):0 APP fio1X...on—>T
p F eior

LET pFoeo
plz :=0] F exT
p b oenon

plk (letz=e; inex):7

ptF flen, ..., en):T

Fig. 1. The type inference rules for terms.

A program is a sequence of definitions of the form
F(zy:01, ..., Tpion):T=B

where F' does not appear previously in the sequence; o; and T are types; B is a
term with no free variables other than 1, ..., ,; every defined function symbol
in B is either F or is defined earlier in the sequence (mutual recursion is not
allowed); and {z1 +— 01, ..., 2o S on} - B:7T.

For example we can define addition on natural numbers as follows.
N ::=zero | s(N)
PRED(z:s): N = II,,1(z)

PLUS(z: N, y: N): N = if(z:zero y s(PLUS(PRED(z), y)))

Note that PRED can only be applied to applications of the constructor s and
that z is declared to be of type N which is {Xs, Xjero}. However, the IF rule
checks the second branch of the conditional under a type environment in which
z has type {X:}.

4 Reducer-Conserver Analysis

Reducer-conserver analysis derives information of the form u < z where z is a
variable occurring in u. The analysis automatically generates and uses reducer
and conserver lemmas of the form f(z1, ..., n) < z; and f(z1, ..., z,) < @;
respectively. For example, we would like to derive DIFF(CDR(z), y) < z from the
fact that CDR reduces and DIFF (set difference) conserves its first argument.

N :=zero | s(N)

PRED(z:s): N = II, 1 ()

MINUS(z: N, y: N): N = if(y:zero z if(z:zero z MINUS(PRED(z), PRED(y))))
RMINUS(:L':S, y:s):N = MINUS(PRED(:B), PRED(y))

B ::= true | false

NOT(z: B): B = if(z:true false true)

ZERO?(z: N): B = if(z:zero true false)

LESS?(z: N, y: N): B = if(z:zero
NOT(ZER0?(y))
if(y:zero
false
LESS?(PRED(z), PRED(y))))

GCD(z: N, y: N): N = if(z:zero
Yy
if(y:zero
z
if(LESS?(z, y):true
GCD(z, RMINUS(y, z))
GeD(RHTNUS(z,), 4))))

Fig.2. A Walther Recursive Definition of GCD

Figure 2 gives a Walther recursive definition of GCD including all type def-
initions (grammars) and auxiliary functions. Under the definitions in the figure
we have that PRED reduces its argument; MINUS conserves its first argument and
RMINUS (restricted MINUS) reduces its first argument. To simplify the analysis
we classify functions as reducers or conservers relative to any legal input. This
creates a need for two definitions of minus — one that allows its arguments
to be zero and hence is not guaranteed to reduce, and one that requires both
arguments to be nonzero.

The simple classification of functions as reducers or conservers over all le-
gal inputs is a significant simplification of Walther’s original calculus. Walther
uses a single function MINUS and creates a conditional lemma stating that MINUS
reduces its first argument in the case where both arguments are nonzero. Here
we avoid such conditionals because we want the calculus to be simple, i.e. “syn-
tactic”. Programmers should have no difficulty in determining by inspection if a
given definition is acceptable. The automatic construction of conditional lemmas
makes analysis by inspection more difficult. However, by forcing the programmer
to use a restricted version of subtraction when using subtraction as a reducer, it
is clear that we are imposing a “discipline” on the programmer. Unlike the disci-
pline of primitive recursion however, the discipline of Walther recursion leaves us
with a version of GCD which is still easy to formally verify — the formal proof
that GCD(z, y) divides both z and y is significantly simpler under this Walther
recursive version of GCD than under a primitive recursive version.

All of the recursive definitions in figure 2 terminate because they recurse on
smaller arguments. In the case of MINUS and LESS? the reduction is done by
PRED. In the case of GCD the reduction is done by RMINUS. Also, in the case of
GCD we are using both arguments as measure arguments — each recursive call
preserves both measure arguments and reduces at least one.

There are two analyses which must done to support Walther recursion (in
addition to the type analysis of the previous section). First, we will define an
analysis which automatically generates lemmas of the form u < z from previously
generated reducer and conserver lemmas for individual functions. Second, we
will define an analysis which automatically generates reducer-conserver lemmas
for each new definition. Both analyses are simple enough to be performed by
inspection.

Figure 3 gives inference rules defining the first analysis. To simplify the
rules, and to increase the precision of the analysis, we use assertions of the
form w < II;i(z) rather than strict inequalities of the form u < wv. These
rules use as input reducer and conserver lemmas which have been automati-
cally derived by syntactic analysis of earlier definitions. These lemmas appear
in the rules inside square brackets. The rules derive assertions of the form
v < Il i (..., (z)...) where z is a variable appearing in u. The rules
make use of an index set R, for each constructor ¢ and the strictness rule STR
and the reduction rule RED1 are restricted to “linear” constructors as we now
explain.

The appropriate measure of size for lists of numbers is the length of the list.

REFL z<gz CONS1 u<t
(

f(...zi...) <z
STR u < I.i(t)
1 € R, clinear flo..ou..)<t
u<t CONS2 Vi€ R, wu; < I.;i(t)
RED1 u<t c(ur, ..., un) <t
(- zj...) < Hei(z;)]
1 € R., clinear IF e

ezgt

Ffloou.)) < (k)
if(zic e; e2) <t
RED2 [F(-e-zj...) < o i(z;)]

LET ezler/z] <t
floou..)) < I ;(u)

(letz=-e; inez) < ¢

Fig. 3. Rules for reducer-conserver analysis.

If numbers are represented as Herbrand terms then taking the weight of a term
to be its total size, in say number of syntax nodes, would give an inappropriate
measure of size for lists — one not well suited to proving, for example, termina-
tion of sorting functions. Following Walther we get a more desirable measure of
size by associating each constructor ¢ with an index set R, and define the weight
of an expression by the following equation.

w(e(u, ..., Un)) =1+ Z w(u)

i€ER,

Again following Walther, we adopt a heuristic for constructing the index set R,
automatically from the grammar. For each projection function I, ; we take 7. ;
to be the output type of II.; so that we have II.; : {¢} — 7. Now we define
R, to be the set of indices 7 such that ¢ € 7 ;. Consider a list constructor cons
used to construct lists of numbers. If u is such a list then cons can not appear
as the top level constructor of the first element of u, i.e., cons & Tcons,1. So we
have Rcons = {2} and the weight of a cons cell is one plus the weight of its cdr.

A constructor c is called a “base constructor” if R, is empty. The weight of
any application of a base constructor is 1. All constants are base constructors
but it is sometimes useful to also have base constructors which take arguments.
A constructor ¢ will be called “linear” if |R.] = 1 and for ¢ € R, we have
that c is the only non-base constructor in 7. ; (the output type of II. ;). The
list constructor cons for building lists of numbers is a linear constructor. Tree
constructors are not linear. An application of a linear constructor can always
be thought of as a sequence and the weight of the term is one greater than its
length.

As an example we consider the derivation of SORT(CDR(2z)) < Icons,2(z) from
the lemmas [CDR(Y) < Ilcons2(y)] and [SORT(y) < y|. First the reflexive rule
(REFL) is used to derive z < z. Then the reducer rule (RED2) applies to the
reducer lemma for CDR to derive CDR(y) < ITcons,2(y). Finally, the first conserver
rule (CONS1) applies the conserver lemma for SORT to derive SORT(CDR(z)) <
Hcons,2(m)-

The rule system is decidable — one can determine where u < ¢ is provable
by enumerating all provable assertions of the form v < ¢’ where v is a subterm of
u. Expansion of let expressions can cause an exponential growth in the printed
length of an expression but it does not increase the number of distinct subterms.
Hence the let rule does not introduce any significant inefficiency.

L ==V |apply(L, L) | lambda(V, L)
V u= variable(LL)
LL ::=1nil | lcons(L, LL)

RENAME(z:V, y:V, w:L): L,
= if(w:variable
if(EQUAL(w, z):true variable(Ilyariable1(¥)) w)
if(w:apply
apply(RENAME(z, y, Happly,1(w)), RENAME(z, y, Il.pply 2(w))
let newvar = variable(lcons(y, lcons(w, lnil)))
in lambda(newvar
RENAME(z, y, RENAME(ITjambda,1 (),
newvar

Mambda2(w)))

SUBST(z:L, y:V, w:L): L,
= if(w:variable
if (EQUAL(w, y):true z w)
if(w:apply
apply(SUBST(z, y, apply,1(w)), SUBST(z, ¥, Happly,2(w))
let newvar = variable(lcons(z, lcons(w, 1lnil)))

in lambda(newvar
SUBST(:E, Y, RENAME(Hlambda’l('w),
newvar

Mambda,2(w)))

Fig. 4. Substitution in the A-calculus.

Figure 4 gives a Walther-recursive definition of substitution in the A-calculus.
The renaming of bound variables to avoid capture prevents the definition from
being primitive recursive. Intuitively, the definitions in figure 4 are acceptable
because RENAME conserves its last argument — the result of renaming is the same

size as the original. Reducer and conserver properties of functions are actually
partial correctness assertions — they state that if the function F terminates then
the value is bounded in a certain way. They are derived before termination anal-
ysis is performed and hence they can be used as part of the termination analysis.
Given that RENAME conserves its third argument, reducer-conserver analysis can
be used to prove that the third argument is reduced on every recursive call. A
similar analysis holds in the definition of SUBST. The rule CONS2 is needed to
verify the conservation property of RENAME in the (awkwardly written) base case.

The soundness of the rules STR and RED1 requires explanation. The difficult
part is ensuring that the term II.;(t) in the conclusion of RED1 is well typed.
This is done by defining a careful semantics for the assertions of the form u <t
generated by the rules. The assertion u <t is taken to mean the conjunction of
the following properties.

— If u is well typed then ¢ well typed.

— If u is well typed then the top level constructor of the value of u is either a
base constructor or the same as the top level constructor of the value of ¢.

— If u is well typed then the weight of the value of u is no larger than the
weight of the value of £.

Now consider the rule RED1. We must show that the conclusion f(...u...) <
II. ;(t) satisfies all of the above conditions under the assumption that the an-
tecedents do. To check the first condition suppose that f(...u...) is well typed.
We can assume that all instances of the reduction lemma satisfy this same in-
variant. Hence II. ;(u) is well typed. This implies that the top level constructor
of u is c. But since 2 € R, we have that ¢ is not a base constructor. Hence, the
top level constructor of ¢ must also be c. In which case IT.;(t) is well typed.
The second invariant follows from the assumption that it holds for all instances
of the reduction lemma in the premise. The final invariant follows from the fact
that c is linear and hence that II.; reduces weight by exactly 1.

Now consider the rule STR. The problematic invariant for this rule is the
second one — that when u is well typed either the top level constructor of u is
a base constructor or is the same as the top level constructor of . Assume that
u is well typed and is an application of a non-base constructor ¢’. From the first
antecedent we have that the value of II. ;(t) must also be an application of ¢'.
But also from the first antecedent we have that II. ;(¢) is well typed and hence ¢
is an application of c. But since c is linear we must have that ¢’ is c. Hence both
u and t are application of ¢ and the invariant is satisfied in the conclusion. We
leave it to the reader to verify the soundness of the other rules relative to the
above semantics.

The second part of reducer-conserver analysis involves automatically gener-
ating new reducer and conserver lemmas for each newly defined function and
checking termination of that function. Initially we have all reducer lemmas of
the form [II. ;(z) < II.;i(z)] where i € R;. Now consider a new definition

F(z1:01, ..., Tnion):T=B

We construct all “self-supporting” conserver and reducer lemmas of the form
[F(z1, ..., 2a) < 2] and [F(z1, ..., ¢n) < I j(z:)] where [F(zq, ..., 2a) <
t] is self-supporting if adding it to the list of reducer and conserver lemmas
allows a derivation of B < t (where B is the definition of F). After deriving
new reducer and conserver lemmas we check termination. First we compute the
set of arguments z; such that for each recursive call F(uy, ..., uy,) in (the
let expansion of) B we can derive either u; < z; or u; < Il j(z;) for some
projection IT. ;.° Take this set of arguments to be the set of measure arguments
for F.If there are no measure arguments then termination analysis fails. If there
are measure arguments then we check that at each recursive call F(uq, ..., un)
in (the let expansion of) B there is some measure argument z; such that we
can derive u; < I, ;, (..., ;. (zi)...) where we have at least one projection
function applied to z; on the right hand side. If at each recursive call at least
one measure argument decreases in this way, then the definition terminates and
is acceptable.

5 Some Sorting Examples

We now give a few sorting examples. The three definitions given here are essen-
tially transcriptions of examples given in [9]. Unlike the termination test given
there, however, the termination test given here is essentially syntactic. Some of
the examples given in [9] fail the syntactic test described here. We start with a
grammar for lists of numbers.

N :u= zero|s(N)

NL ::= nnil | ncons(N, NL)

HEAD(z:ncons): N = anons,l(-’ﬂ)

TAIL(:L':ncons):]\E = anons’z(:c)

As discussed in the previous section, the analysis takes the weight of a list to
be its length rather than the sum of the weight of its elements. Our first example
is a Walther recursive version of selection sort. Each example is accompanied by
relevant reducer and conserver lemmas that have been automatically generated
from the definitions of auxiliary functions.

SSORT(z: NL): NL = if(z:nnil,

nnil

ncons(MIN(z), SSORT(REPLACE(MIN(z), HEAD(z), TAIL(z))))
[REPLACE(z, y, 2) < z]

The definitions of MIN and REPLACE are not given but they are simple prim-
itive recursions. The definition of SSORT shows that some creativity may be
needed in constructing Walther recursive definitions. A more natural definition
would use the recursive call SSORT(REMOVE(MIN(z), z)). Unfortunately REMOVE is
not a reducer in general. Furthermore, it is not possible to express appropriate

& Because of the restrictions on the rule STR it is possible that for complex grammars
we can derive u; < I j(z;) but not u; < z;.

type restrictions on a restricted version of REMOVE (which might be analogous
to RMINUS) because the type system corresponding to a monomorphic gram-
mar does not support dependent types. However, by using REPLACE rather than
REMOVE we arrive at a Walther recursive definition.

The next example is a version of quicksort. SMALLER-MEMBERS(z, y) returns
the list of members of y which are smaller than the number z. DIFF(z, y) returns
the list of members of z that are not members of y. Both of these functions are
conservers.

QSORT(z: NL): NL = if(z:nnil,

nnil
APPEND(QSORT(SMALLER-MEMBERS(HEAD(z), TAIL(z))),
ncons(HEAD(z),
QSORT(DIFF(TAIL(z),

SMALLER-MEMBERS(HEAD(z), TAIL(z))))

[SMALLER-MEMBERS(z, y) <y], [DIFF(z, y) < z]

The final example is a version of mergesort. The function EVEN takes a list
and returns the set of elements which occur at even positions in that list (where
the first element occurs at an odd position). The function EVEN is restricted so
that it only applies to nonempty lists. Under this restriction, EVEN is a reducer.
Note that the rule CONS2 is required to show that the the second recursive call
involves a smaller argument.

MSORT(z: ML): NL = if(z:nnil,
nnil,
if(TAIL(z):nnil,
m’
MERGE(MSORT(EVEN(z)),
MSORT(ncons(HEAD(z), EVEN(TAIL(z)))))))

[EVEN(z) < Hncons,2 ()]

6 Discussion

Walther recursion generalizes primitive recursion and allows more natural, and
hence more easily verifiable, definitions of functions such as GCD. Walther recur-
sion is not a panacea for termination analysis however. There are many natural
definitions of GCD and SORT which are not Walther recursive. However, Walther
recursion seems sufficiently simple that one can learn to write in a Walther re-
cursive style. The situation is similar to, but somewhat less restrictive than,
primitive recursion.

Walther recursion does not introduce any new semantic functions — it only
allows for more natural definitions of functions which already have (unnatural)
primitive recursive definitions. However, it seems that syntactic liberalizations
of primitive recursion have a role in verification systems. Furthermore, Walther
recursion seems like a particularly natural and possibly distinguished liberaliza-
tion.

One weakness of Walther recursion seems to be the absence of polymor-
phism or dependent types in the associated type system. It seems likely that the
monomorphic grammars used to define types could be replaced by polymorphic
type declarations for data constructors. It might also be possible to construct a
purely syntactic treatment of “semantic” dependent types such as MEMBER-0F(z)
where z is a list or LIST-CONTAINING(z) where z is a number. This might pro-
vide a syntactic notion of terminating recursion which would handle the natural
definition of selection sort.

We are optimistic that sophisticated syntactic analysis methods will improve
the effectiveness of termination verification and of verification more generally
construed.

References

1. A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types.
In ACM Symposium on Principles of Programming Languges, pages 163-173. As-
sociation for Computing Machinery, 1994.

2. Robert S. Boyer and J Struther Moore. A Computational Logic. ACM Monograph
Series. Academic Press, 1979.

3. N. Dershowitz and J.P. Jouannaud. Rewrite systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics, pages 243-320. MIT Press, 1990.

4. Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer
Science, August 1979.

5. Thom Frihwirth, Ehud Shapiro, Moshe Vardi, and Eyal Yardeni. Logic programs
as types for logic programs. In Proceedings, Sizth Annual IEEE Symposium on
Logic in Computer Science, pages 75—-83. IEEE Computer Society Press, 1991.

6. N. Heintze. Set based analysis of ML programs. In ACM Conference on Lisp and
Functional Programming, pages 306-317, 1994.

7. M. O. Rabin. Decidability of second order theories and automata on infinite trees.
Trans. of Amer. Math. Soc., 141:1-35, 1969.

8. W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer
Science, Volume B, Formal Methods and Semantics, pages 133-164. MIT Press,
1990.

9. Cristoph Walther. On proving termination of algorithms by machine. Artificial
Intelligence, 71(1):101-157, 1994.

10. webmaster@cli.com. Home page for computational logic incorporated.
http://www.cli.com/index.html.

11. Javier Thayer, William Farmer, Joshua Guttman. Imps: An interactive mathe-
matical proof system. In CADE-10, pages 653-654. Springer-Verlag, 1990.

This article was processed using the IATEX macro package with LLNCS style

