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Abstract. Researchers in formal methods have emphasized the need to
make specification analysis as automatic as possible and to provide an
array of tools in a uniform setting. Athena is a new interactive proof
system that supports specification, structured natural deduction proofs,
and trusted tactics. It places heavy emphasis on automation, seamlessly
incorporating off-the-shelf state-of-the-art tools for model generation and
automated theorem proving. We use a case study of railroad safety to
illustrate several aspects of Athena. A formal specification of a rail-
road system is given in Athena’s multi-sorted first-order logic. Automatic
model generation is used abductively to develop from scratch a policy for
controlling the movement of trains on the tracks. The safety of the pol-
icy is proved automatically. Finally, a structured high-level proof of the
policy’s correctness is presented in Athena’s natural deduction calculus.

1 Introduction

Logic has been called “the Calculus of Computer Science” [9,20]: just as Calcu-
lus and differential equations can be used to model the behavior of continuous
physical systems, the language of mathematical logic can be used as a succinct
and unambiguous notation for specifying the structure and behavior of discrete
systems. Once we have obtained a logical specification of such a system in the

form of a logical formula P; A --- A P,, we can begin to ask various questions:
1. Is the specification consistent? That is, does the formula P; A --- A P, have
a model?

2. Does the specified system have a desired property P? That is, does the
specification P; A --- A P, logically imply P?

Two different techniques are used to answer these questions: model generation
and theorem proving. Model generation can be used to answer the first question
positively by exhibiting a model for P; A --- A P,,. Theorem proving can be used
to settle the second question positively by showing that the implication

PIA -+ APy=P (1)

is a tautology. On the flip side, we can use theorem proving to settle the first
question negatively, by proving that the constant false follows logically from
Py A --- A P,; and we can use model generation to settle the second question



negatively, by exhibiting a model for Py A --- A P, A =P, i.e., a countermodel
for (1). In view of this natural synergy it would appear useful to have both of
these techniques available in one uniform setting, and indeed several researchers
have made such suggestions [22, 10]. The system that we discuss in this paper,
Athena, offers both.

Once we have concluded that our system has a desired property P, we are
left with the task of explaining why that is why P follows from P; A --- A P,.
One possible answer is: “Because our favorite theorem prover said so.” That
may be an acceptable answer, depending on the context of the application. But
it provides no insight into our system and has little explanatory value. A much
better alternative is to adduce a formal proof that shows how P is derived from
the specification. Such a proof should be mechanically checkable in order to
ensure its correctness. But it must also be structured [19]: It should be given
in a natural deduction format, in a precisely defined language with a formal
semantics, and should be expressed at a level of abstraction roughly equivalent
to that of a rigorous proof in English. This brings us to our third topic, which
is a major component of formal methods in its own right: the subject of proof
representation and checking.

Athena [1] is a new system that integrates all three of these elements: model
generation; automated theorem proving; and structured proof representation and
checking. It also provides a higher-order functional programming language, and
a proof abstraction mechanism for expressing arbitrarily complicated inference
methods in a way that guarantees soundness, akin to the tactics and tacticals
of LCF-style systems! such as HOL [8] and Isabelle [24]. Proof automation is
achieved in two ways: first, through user-formulated proof methods; and second,
through the seamless integration of state-of-the-art ATPs (such as Vampire [30]
and Spass [31]) as primitive black boxes for general reasoning. For model genera-
tion, Athena integrates Paradox [6], a new highly efficient model finder. For proof
representation and checking, Athena uses a block-structured Fitch-style natural
deduction calculus [25] with novel syntactic constructs and a formal semantics
based on the abstraction of assumption bases [2].

In this paper we will illustrate all these aspects of Athena with a case study.
We will develop a policy for controlling the movement of trains in a railroad
system and prove that the policy is sound, in the sense that it satisifies a certain
notion of safety. The soundness of the policy is proved completely automatically
by the off-the-shelf ATPs that Athena uses under the hood. ATP technology
has made impressive strides over the last few years, and the systems that are
bundled with Athena—especially Vampire, the winner of the last few CASC
competitions—-are now remarkably efficient. To give some perspective, it took
a senior CS student at MIT several solid hours of work to prove the main result
of this case study; it took Vampire a fraction of a second.

! An important difference of such systems from Athena is that they are based on
sequent calculi. By contrast, Athena uses a Fitch-style formulation of natural de-
duction [25], which helps to make proofs and proof algorithms more perspicuous.



Beyond the completely automatic verification of the policy’s soundness, we
also provide a structured proof for it in Athena’s natural deduction framework,
which is then successfully machine-checked (also in less than one second).

Moreover, we show that model generation is useful not only for consistency
checking and for debugging our specifications, but also for building them. In
particular, we demonstrate an aggressive use of model generation that performs
abduction in a way that helps not only to debug a safety policy, but to build it
in the first place.

In logical deduction, reasoning proceeds from the premises to the conclusion:
We take a given number of propositions as premises and attempt to derive some
desired conclusion from them. During system design, however, we are often faced
with the problem in the reverse direction: We know the desired conclusion, but
we are not sure what constraints would be required in order to ensure it. That is,
we have a skeleton system description P; A --- A P, ready; and we have a desired
property P. What we wish to know is what additional constraints Q1,...,Qmn
are necessary in order to guarantee P, i.e., such that

{Pla"'aPn}U{Qla"'an} ‘:P

That is the problem of abduction [16,15], which proceeds in the reverse direction
from deduction.
The following is a simple iterative procedure for this problem:

. Set C = {true}.

. Try to prove {Py,...,P,} UC [ P; if successful, halt and output C.

. If unsuccessful, try to find a model for {Py,..., P,} UC U {=P}.

. If successful, use the information conveyed by that model to refine C' appro-
priately and then loop back to step 2; if unsuccessful, fail.

N

We illustrate this algorithm in Section 3. The individual steps of the algorithm
are semi-mechanical, as the corresponding problems are unsolvable; but, with
the aid of highly efficient tools, steps 2 and 3 can be greatly automated. The
fourth step is the one requiring the most creativity, but the minimality of the
countermodels produced in step 3 is very useful here: on every iteration through
the loop, the simplest possible countermodel is produced, and this greatly fa-
cilitates the conjecture of a general condition that rules out the countermodel.
After a few iterations of successive refinement, we will eventually converge to an
appropriate theory.

2 Specification of an abstract railroad model

Our railroad model is based on an Alloy [13] case study by Daniel Jackson [12],
which was in turn inspired by a presentation on modeling San Fransisco’s BART
railway by Emmanuel Letier and Axel val Lamsweerde at a meeting of IFIP
Working Group 2.9 on Requirements Engineering in Switzerland, in February
2000.



We view a railroad abstractly by positing the existence of two domains Train
and Segment. That is, we assume we have a collection of trains and a collection
of track segments on the ground. Every segment has a beginning and an end,
and motion on it proceeds in one direction only, from the beginning towards
the end. Therefore, segments are unidirectional. Of course trains may move in
opposite directions on different segments; but on any given segment trains move
in one direction only. At the end of each segment there is a gate, which may be
either open or closed. Gates will be used to control train motion.

2.1 Railroad topology

Segments can be connected to one another, with the end of one segment attached
to the beginning of another, and it is this connectivity that creates an organized
railroad out of a collection of segments. We will capture this connectivity with
a binary relation succ C Segment X Segment. The intended meaning is simple:
succ(sy, s2) holds iff sy is a “successor” of sy, i.e., iff the end of s; is connected
to the beginning of ss. A segment might have several successors. In general,
multiple segments might end at the same junction and fork off into multiple
successor segments. We stipulate that succ is irreflexive, so that no segment
loops back into itself, and intransitive, which is an obvious physical constraint.
Two segments may overlap, meaning that there is some piece of track, how-
ever small, that is shared by both segments. Segments that cross, for instance,
will be considered overlapping. We model this with a binary relation overlaps C
Segment x Segment. We will make two useful assumptions about this relation,
reflexivity and symmetry. Clearly, both assumptions are consistent with the in-
tended physical interpretation of overlaps. We thus have four axioms so far:

V s . —succ(s, s) (2)

Y $1, 82,83 . succ(sy, $2) A succ(sa, s3) = —succ(sy, S3) (3)
V s . overlaps(s,s) 4)

V 81,82 . overlaps(sy, S2) = overlaps(sa, s1) (5)

2.2 Capturing the state of the system

How do we capture a configuration of the railroad system at a given point in
time? In order to know the state of the system we need to know two things.
First, the distribution of the trains on the segments. That is, for each train ¢
we need to know what segment ¢ is on. And second, for each segment, we need
to know whether its gate is open or closed. For our purposes, the state will be
completely determined by these two pieces of information. Accordingly, we posit
a domain State, a function

seg0f : Train X State — Segment

and a relation closed C Segment X State. The interpretations are as stated
above: seg0f(t,x) denotes the segment on which ¢ is located in state z; and
closed(s, z) holds iff the gate of segment s is closed in state x.



It is useful to introduce an auxiliary relation occupied C Segment X State
such that occupied(s, z) holds iff segment s is “occupied” in state z. We define
this explicitly as follows: V s,z . occupied(s,z) < [3 t . segDf(t,x) = s].

We will model train motion as a transition relation between states:

reachable C State X State

The idea is that reachable (z,y) (“state y is reachable from state x”) iff y is
identical to x except that some (possibly none) trains have moved to successor
segments—provided of course that they could make such a move. Specifically:

(V z,y) reachable (x,y) <
(V1) segDf(t,y) # segOf(t, z) = succ(seglf(t, x), segDf(t,y)) A
—closed(seg0f (¢, ))]

That is, in going from state x to y, a train ¢ either didn’t move at all or else it
had an open gate in state x and moved to a successor segment.

This relational formulation is highly non-deterministic and allows for any
physically possible transition from one state to another,? including cases where
only one train moves, where none do, where two or three of them do, etc. This
non-determinism is desirable, since we want our model to cover as many scenarios
as possible.

2.3 Safety

We will consider a state safe iff no two trains are on overlapping segments:
V x . safe(x) & [V t1,ty . t1 # ty = —overlaps(seg0f(t1, ), seg0f(t2, x))]

We can now ask what would be an appropriate policy for controlling train motion
that would guarantee this safety criterion. We make this more precise as follows:
We define a sound safety policy as any number of unary constraints on states
C4,...,C, such that for all states z and y, if

1. x is safe;
2. x satisfies the constraints C4, ..., Cy, i.e., C1(z),...,Cp(z) hold; and
3. y is reachable from z

then y is also safe. The problem now is to come up with state constraints that
constitute a sound safety policy in this sense.

3 Abduction via model generation

Initially we may well be at a loss in guessing what constraints might be appro-
priate. We will show how an efficient model finder can provide insight on how
to proceed.

2 Modulo our simplifying assumptions, most notably, our assumption that moving
from one segment to another is instantaneous.



Let us start out with the most trivial state constraint possible: the constant
true. With this policy, our safety statement becomes:

V x,y . [safe(x) A reachable(x,y) A true] = safe(y)

Athena uses a prefix s-expression syntax, so we can define this proposition as
follows:

(define policy-safety
(forall 7x 7y
(if (and (safe 7x)
(reachable 7x 7y)
true)
(safe ?7y))))

Predictably, this statement isn’t true, and when we try to prove it automat-
ically by issuing the method call (!prove policy-safety), we fail.

Now let us see why this does not hold. We will try to find a countermodel
for this statement, and the details of that model will spell out why this trivial
policy fails. Armed with that information, we can start developing a policy in
increments by fixing the problems that are discovered by the model finder.

We start by issuing the following command:

(falsify policy-safety) (6)

This command attempts to find a model for the collection of all the propositions
in the current assumption base plus the negation of policy-safety. Within a few
seconds, Athena informs us that a countermodel has been found, that is, a model
in which all the propositions in the assumption base are true, but policy-safety
is false. Athena displays the model by enumerating the elements of each sort and
listing the extension of every function and predicate. In particular, command (6)
results in the output shown in Figure 1.

The countermodel consists of two states, state-1 and state-2. The second
state is reachable from the first; and while the first state is safe, the second is

succ(segment-1, segment-1) = false overlaps(segment-1, segment-1) = true
succ(segment-1, segment-2) = true overlaps(segment-1, segment-2) = false
succ(segment-2, segment-1) = true overlaps(segment-2, segment-1) = false
succ(segment-2, segment-2) = false overlaps(segment-2, segment-2) = true
seg0f (train-1, state-1) = segment-1
safe(state-1) = true seg0f (train-1, state-2) = segment-2
safe(state-2) = false segDf (train-2, state-1) = segment-2
segDf (train-2, state-2) = segment-2
closed(segment-1, state-1) = false reachableFrom(state-1, state-1) = true
closed(segment-1, state-2) = true reachableFrom(state-1, state-2) = true
closed(segment-2, state-1) = false reachableFrom(state-2, state-1) = true
closed(segment-2, state-2) = false reachableFrom(state-2, state-2) = true

Fig. 1. Athena output displaying a countermodel.
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Fig. 2. A countermodel falsifying the trivial safety constraint true.

not. Therefore, policy-safety is false in this model. The reason for the failure
becomes evident when we inspect the details of the model. There are two seg-
ments, each of which is a successor of the other, and two trains. In state-1,
train-1 is on segment-1 and train-2 on segment-2, and the gate of segment-1
is open. Consequently, train-1 is free to move on to segment-2, and indeed in
state-2 we have both trains on the second segment—a violation of our safety
notion. Graphically, the situation is depicted in Figure 2. We use small rectan-
gular boxes to represent trains. An open (closed) gate is indicated by the symbol
\/ (respectively, x).

The issue is this: when a successor of a segment s is occupied, then s ought
to have a closed gate. This is clearly violated in the countermodel, and that is
how the unsafe second state is obtained. Therefore, we formulate our first state
constraint as follows:

C1(z) &V s1,82 . [succ(sy, $2) A occupied(ss, z) = closed(sy, x)]

for arbitrary x. Accordingly, we redefine policy-safety to be the following propo-
sition: V x,y . [safe(z) A reachable(z,y) A C1(z)] = safe(y).

When we try to prove this automatically, we fail, so we revert to the model
finder. Issuing the command (falsify policy-safety) results in the counter-
model shown in Figure 3 (we omit Athena’s textual presentation of the model
for space reasons). Once again, there are two states, where the first one is safe
while the second one is reachable from the first but unsafe. There are three
segments, s1, s2, and sz, where succ(sy, $2), succ(sa, s3), and succ(ss, s1). Fur-

X X
t21]
to
S1 X t2 moves 81 — X
) \/ « [ -
Mt |so Mt |so
S3 S3
state-1 (safe) state-2 (unsafe)

Fig. 3. A countermodel falsifying constraint C'.
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Fig. 4. A countermodel falsifying constraint Cj.

ther, s; overlaps both sy and s3, while s5 and s3 do not overlap. And there are
two trains, t; and 9. The first state is as depicted in the left half of Figure 3;
namely, t; is on s9, which has a closed gate, while ¢5 is on s3, whose gate is open.
(Segment s; has a closed gate in this state, although that is immaterial since
s1 is not occupied in this state.) Note, in addition, that this state satisfies our
constraint C7. There is only one segment with an open gate, s3. And C; allows
s3 to have its gate open because s3 does not have any occupied successors. The
only successor of s3 is s1, and there are no trains on s; in this state.

Now the unsafe second state, shown in the right half of Figure 3, is obtained
from the first state when ¢5 moves from sz to s;. This is permissible because
s3 has an open gate in the first state. But the new state is unsafe because even
though s; has only one train on it, it nevertheless overlaps with ss, which is
occupied by t1. This violates our notion of safety, which prescribes a state safe
iff there are no overlapping segments occupied by distinct trains. Since s; and
so are overlapping and occupied by distinct trains in the new state, the latter is

unsafe.
Thus we see that our initial constraint C; does not go far enough. It is not

enough to stipulate that a predecessor of an occupied segment must have a
closed gate; we must stipulate that a predecessor of a segment that overlaps with
an occupied segment must have its gate closed. This is a stronger condition. It
implies C7, owing to our assumption that the overlaps relation is reflexive. So
we introduce a new constraint C1:

Ci(z) &V s1, 82,83 . [succ(s1, s2) A overlaps(sa, s3) A occupied(ss, ) = closed(sy, )]
and redefine policy-safety to be the proposition
V z,y . [safe(x) A reachable(z,y) A C;(z)] = safe(y)

Unfortunately, when we attempt to prove this latest version automatically,
we fail again. Returning to the model finder, we attempt to falsify this statement,
which succeeds via the countermodel shown in Figure 4. As the picture makes
clear, the problem is that two trains were able to move to the same segment
simultaneously, because two distinct predecessors of the segment had open gates
at the same time. To disallow this, we formulate the following constraint:

Va.Cyr)e[Vs1,s2. 81 #s2A (T s. suce(sy, s) Asucc(sz, s)) A
—closed(sy, z)] = closed(sz, z)
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Fig. 5. A countermodel falsifying constraint Cs.

This guarantees that, in any state, if two distinct segments have the same suc-
cessor and one of them has an open gate, then the other will have a closed gate.
This is an adaptation of the traffic rule which says that an intersection should
not show a green light in two different directions. We now redefine policy-safety
as follows:

V z,y . [safe(x) A reachable(z,y) A C(x) A Ca(z)] = safe(y)

But this version is not valid either. Attempting to falsify it results in the
countermodel shown in Figure 5. The problem is essentially a generalization of
the situation depicted by the countermodel in Figure 4. This time, ¢; and t3 do
not move to the same segment, but to overlapping ones. This is possible because
the segments on which ¢; and ¢y are placed initially (namely, s and s4) have
overlapping successors and yet both of them have open gates at the same time.
We need to prohibit this. Let us say that two distinct segments are joinable
iff they have overlapping successors. That is, for all s; and sy, joinable(sy, S2)
holds iff

s1 # s2 A[3 s8], s, . overlaps(s),sh) A succ(sy,s)) A succ(sa, sh)]

We then need to stipulate that of any two joinable segments, at most one has
an open gate. We express this via a new constraint C} as follows:

CY(z) & [joinable(sy,s2) A ~closed(s1, z) = closed(sa, 7))

Observe that C} implies Cy (since overlaps is reflexive), hence it is no longer
necessary to state Cy. Therefore, our safety statement now becomes:

(define policy-safety
(forall 7x 7y
(if (and (safe 7x)
(reachable 7x 7y)
(C1’ 7x)
(€2’ 7x))
(safe ?7y))))



This time, the attempt (!prove policy-safety) succeeds instantly, confirming
that we have finally arrived at a sound safety policy.

4 Structured proof representation

We have automatically verified the soundness of our safety policy, and while
that should boost our confidence in the policy, it is not quite good enough. As
engineers, we should be able to convince others that our policy is indeed sound—
we should be able to justify our policy with a solid argument. That justification
should take the form of a rigorous mathematical proof. However, not just any
proof will do. A formal proof of an important system property should serve as
human-readable documentation: it should explain why the property holds. To
that end, the proof should be structured, given in a natural deduction style
resembling common mathematical reasoning, and at a high level of abstraction.

Athena proofs are expressed in a block-structured (“Fitch-style” [25]) natural
deduction calculus. High-level reasoning idioms that are frequently encountered
in mathematical practice are directly available to the user, have a simple seman-
tics, and help to make proofs readable and writable. Athena’s off-the-shelf ATP
technology can be used to automatically dispense with tedious steps, focusing
instead on the interesting parts of the argument and keeping the reasoning at a
high level of detail.

Most interestingly, a block-structured natural deduction format is used not
only for writing proofs, but also for writing tactics (“methods” in Athena ter-
minology). This is a novel feature of Athena; all other tactic languages we are
aware of are based on sequent calculi. Tactics in this style are considerably easier
to write and remarkably useful in making proofs more modular and abstract. As
this example will illustrate, writing methods can pay dividends even in simple
proofs.

In what follows we present a formal Athena proof of the safety of our policy.
As our starting point, and for purposes of comparison, consider first a rigorous
proof of the result in English:

Theorem 1. For all states x and y, if (1) x is safe; (2) y is reachable from x;
and (3) © satisfies constraints C| and C4; then y is also safe.

Proof. Pick arbitrary states  and y and assume that z is safe; that y is reachable
from z; and that C}(z) and C%(z) hold. Under these assumptions, we are to prove
that y is safe.

We will proceed by contradiction. Suppose, in particular, that y is not safe.
Then, by the definition of safety, there must be two distinct trains ¢; and 3 on
overlapping segments in y, that is, we must have t; # t5 and

overlaps(seg0f(t1,v), seg0f(t2,v)) (7)

We now ask: did either train move in the transition from state z to y, or did
both stay on the same segment? Exactly one of these two possibilities must be



the case, i.e., we must have either

case; = [seg0f(t1,y) # seg0f(t1,x)] V [segDf(t2,y) # seglf(t2, )]
(t; moved or t5 moved); or else:

cases = [seg0f(t1,y) = segDEf(t1,x)] A [segDf(t2,y) = seglf(ta, x)]

(neither one moved). The disjunction case; V cases holds by the law of the ex-
cluded middle. We will now show that a contradiction ensues in either case.
Consider casey first, i.e., assume

seg0f (t1,y) = seg0f(t1,x) (8)
seg0f(t2,y) = seg0f(t2, ) (9)

Then, from (8), (9), and (7), we conclude
overlaps(seg0f(t1,x), seg0f(ta, )) (10)

i.e., that the segments of ¢; and t5 in state x overlap. But ¢; and t5 are distinct
trains, so that would mean that state z is unsafe: that it has two distinct trains on
overlapping segments. This is a contradiction, since we have explicitly assumed
that z is safe.

Consider now case;, where at least one of the trains has moved in the tran-
sition from z to y. Without loss of generality, assume that ¢; moved, so that

seg0f(t1,y) # segDf(t1,x) (11)

From this, along with the hypothesis that y is reachable from x and the definition
of reachability, we conclude that the segment of t; in y is a successor of the
segment of ¢; in z; and that the segment of ¢; in z had an open gate:

succ(seg0f(t1,x), seglf(t1,y)) (12)
—closed(seg0f(t1,),x) (13)

We now perform a case analysis depending on whether or not ¢, moved as
well. Suppose first that, like £1, to also moved, so that:

seg0f(ta,y) # seglf(ta, ) (14)
As before, this entails (in tandem with the reachability of y from z) the following:

succ(seg0f(t2, x), segf(ta, y)) (15)
—closed(seg0f (t2, ), ) (16)
But this means that the segments seg0f(t1, ) and seg0f(t2, x) are joinable: (a)

they are distinct (if they were identical, then 2 would be unsafe, since t; # t5 and
overlaps is reflexive, contrary to our assumption); and (b) they have overlapping



successors (from (7), (12), and (15)). Therefore, state x has two joinable segments
with simultaneously open gates a condition that is explicitly prohibited by C%,
which is supposedly observed in z. Hence a contradiction.

By contrast, suppose that t5 did not move during this state transition:

seg0f(t2,y) = seg0f(t2, x) (17)
In that case, (7) entails
overlaps(seg0f(t1,y), seg0f(t2,x)) (18)

This case violates constraint C] in state z: seg0f (1, x), the segment of ¢; in z,
is the predecessor of a segment that overlaps with an occupied segment, namely,
seg0f (ta, x). Therefore, according to C7, it should have its gate closed—but it
does not, a contradiction.

This concludes the case analysis of whether t; moved, on the assumption
that t; has moved. A symmetric argument can be given on the assumption that
ts has moved. O

This is a perfectly rigorous proof, with one exception: the phrase “without
any loss of generality” is vague. Nevertheless, it is a frequent mathematical
colloquialism. Typically, it means that there is a finite number of cases to consider
C1,...,Cn, and it does not really make a difference which ¢; we analyze because
the reasoning for one of them can be readily applied to the others. This is
reiterated in the closing remark that “a symmetric argument can be given on
the assumption that t5 moved.”

These colloquialisms can be given more precise meaning with the help of
algorithmic notions. What we really are saying above is that any proof for a
particular ¢; can be abstracted (over a number of appropriate parameters) into
a general proof algorithm that can be just as well applied to the other cases.
That is, we are claiming that there is a tactic that will produce the desired
conclusion in any given case. In the Athena proof of the safety result, shown in
Figure 6, we formulate such a method M that is capable of performing the correct
analysis on a variable input assumption of which train has moved first. Treating
both cases then becomes simply a matter of invoking (M t1 t2) first and then
transposing the arguments and invoking (M t2 t1) for the second case.

The technical details of the Athena proof are not so important; the interested
reader could follow them by consulting a description of the formal syntax and
semantics of the language [4]. The important points are: (a) the Athena proof
reads more or less like the English proof, in that the overall structure of both
proofs as well as the granularity of the individual inferences are similar; and (b)
tactics in block-structured natural deduction style are easy to write and useful
even in simple proofs.

5 Related work

Alloy [13] is also aimed at automatic analysis of abstract system designs (mainly
software systems). Alloy’s specification language is based on Tarski’s relational



(policy-safety BY
(pick-any x y
(assume-let ((hyp (and (safe x)
(reachable x y)
(C1A x)
(C24 x))))
(1by-contradiction
(assume (not (safe y))
(dlet ((P ('derive (exists 7t1 ?7t2
(and (not (= 7t1 7t2))
(overlaps (segOf ?7tl y) (segDf ?t2 y))))
[(not (safe y)) safe-definition])))
(pick-witnesses (t1 t2) P
(dlet ((t-property (and (mot (= t1 t2))
(overlaps (segOf t1 y) (segDf t2 y))))
(t-distinct (!derive (not (= t1 t2)) [t-propertyl))
(t-overlapping (!derive (overlaps (segOf t1 y) (segDf t2 y)) [t-propertyl))
(one-has-moved (!derive (or (mot (= (segOf t1 y) (segOf t1 x)))
(not (= (segOf t2 y) (segDf t2 x))))
[hyp safe-definition t-propertyl))
(M (method (ri r2)
(assume-let ((hypl (not (= (segDf rl y) (segOf ri x)))))
(dlet ((P1 (!derive (succ (segDf rl x) (segDf ri y))
[hypl reachable-definition hyp]))
(P2 (!derive (not (closed (segOf rl x) x))
[hypl reachable-definition hyp]))
(c1 (assume-let ((casel (not (= (segOf r2 y) (segDf r2 x)))))
(dlet ((P3 (!derive (succ (seglf r2 x) (segDf r2 y))
[casel reachable-definition hyp]))
(P4 (lderive (not (closed (segOf r2 x) x))
[casel reachable-definition hypl))
(P5 (lderive (not (= (segOf rl x) (segDf r2 x)))
[hyp t-distinct safe-definition
(reflexive overlaps)]))
(P6 (lderive (joinable (segOf rl x) (segDf r2 x))
[P3 P1 t-overlapping P5
joinable-definition
(symmetric overlaps)])))
(lderive false [C2’-definition P2 P4 P6 hypl))))
(c2 (assume-let ((case2 (= (segDf r2 y) (segOf r2 x))))
(dlet ((P7 (!derive (occupied (segOf r2 x) x)
[case2 occupied-definition]))
(P8 (!derive (overlaps (segDf rl y) (segDf r2 x))
[case2 t-overlapping
(symmetric overlaps)])))
(lderive false [P7 P8 P2 hyp P1 C1’-definition
(symmetric overlaps)1)))))

(1by-cases o1 c2 [1)))))
(say-ti-moves ((if (not (= (segDf t1 y) (seglf t1 x))) false) BY (IM t1 t2)))
(say-t2-moves ((if (not (= (segDf t2 y) (seglf t2 x))) false) BY (IM £2 £1))))

(1by-cases say-ti-moves say-t2-moves [ome-has-moved])))))))))

Fig. 6. Athena proof of safety

calculus, with heavy influences from Z [27]. It has been successfully used to
analyze several systems, e.g. exposing bugs in Microsoft’s COM [14] and in a
naming architecture for dynamic networks [18]. The case study we presented in
this paper was originally done in Alloy [12]. The main difference is that Alloy does
not have a notion of proof, and hence it cannot be used to verify infinite-state
systems. It can detect the presence of bugs but cannot establish their absence.
Prioni [3] is a tool that attempts to bridge this gap by integrating Alloy with
Athena. Athena proofs in Prioni are based on an explicit first-order axiomati-
zation of the calculus of relations and a lemma library containing various useful
results for that calculus (e.g., that the transpose and reflexive transitive closure
of a homogeneous binary relation commute). Essentially, the Alloy calculus of
relations is used as an object language and Athena is used as a metalanguage to
manipulate and reason about the object language. This indirection can compli-
cate the reasoning required for the proof effort. Automation is also hindered in
Prioni. For instance, the completely automatic soundness proof that we obtained



for this case study would be highly unlikely in Prioni because the assumption
base would be overpopulated with the entire axiomatization of the relational
calculus and the lemma, library. It is well known that ATPs get overwhelmed by
large sets of premises [26]. Finally, Prioni’s integration of Alloy and Athena is
not seamless in the sense that the user must be fluent in both systems in order
to use the tool. By contrast, in the approach we illustrated in this paper, the
integration of Paradox into Athena is completely seamless; the user has no idea
that Paradox is running under the hood.

This opaque use of Paradox is enabled by an automatic translation from
Athena’s multi-sorted logic to the standard single-sorted TPTP input format
[28] of Paradox and back.® The translation is written in Athena itself, leveraging
its facilities for manipulating propositions. Once a model has been produced, an-
other translation takes place that transforms the Paradox output into a format
that makes sense to the Athena user (as shown in Figure 1). Similar remarks
can be made about Athena’s use of ATPs. To take a simple example, Vampire
has a fairly limited lexical notion of variables (e.g., they must begin with cer-
tain letters), whereas Athena is more liberal (e.g., names such as 7*d2-E3 are
legal). Incompatibilities of this kind are resolved silently during the automatic
translation. This approach pays heed to the lessons that have emerged from suc-
cessful case studies, which stress that “evidence of the ATP must be hidden,”
and that due attention must be given to pragmatic issues, e.g., implementation
restrictions such as reserved identifiers, length of symbols, etc. issues that are
“often overlooked in research-oriented environments” although “they are impor-
tant prerequisites for successful applications of ATPs” [26].

Some ATPs such as Gandalf [29] and Spass [31] have model-building capabili-
ties in addition to standard resolution-based refutation. However, direct applica-
tion of such a batch-oriented ATP is challenging because of its “low bandwidth
of interaction,” which renders it “a toolkit with only one single tool” [7]. As
Schumman puts it, such ATPs are like racing cars—they are fast and power-
ful but cannot be used in everyday traffic because essentials such as headlights
are missing [26]. The same can be said about Paradox. By contrast, interactive
proof environments (such as Isabelle, PVS, Athena, etc.) provide the essentials
as well as bells and whistles: rich specification languages, definitional facilities for
incremental extension of proof scripts, abstraction mechanisms, computational
capabilities, tactics, etc. It therefore makes more sense to harness the power of
ATPs from within such environments rather than as stand-alone applications.

Theorem proving has been combined with model checking in systems such
as PVS [23], ACL2 [17], SLAM [5], and others (SLAM’s “counterexample-driven
refinement” is also somewhat similar to our notion of incremental abduction via
countermodel generation). Model checking is different from model generation—
it checks whether a formula holds in a given model, so there are two possible
answers: “valid” or “invalid,” with the latter accompanied by an offending trace.

3 The standard embedding of many-sorted logic into single-sorted logic [21] is used in
going from Athena to Paradox; this is safe for our purposes, since the embedding is
well-known to preserve finite models.



The correctness of the model-checking algorithm implementation is crucial for
the credibility of “valid” answers, as most model checkers do not emit proofs that
can be independently checked (unlike ATPs such as Vampire and Spass, which
do emit proofs). There have also been attempts to integrate some higher-order
proof systems with first-order ATPs, as in the integration of Gandalf and HOL
[11]. These are not entirely happy marriages, however, since some higher-order
goals cannot be desugared into first-order logic; indeed, this remains an active
research field. That is not an issue for Athena, which is a first-order system.
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