Stream Algorithms and Architecture
by
Henry Hoffmann
B.S., University of North Carolina at Chapel Hill 1999

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2003
(© Massachusetts Institute of Technology 2003. All rights reserved.

AUthor ..o
Department of Electrical Engineering and Computer Science
May 22, 2003

Certified Dy . ..oon
Anant Agarwal

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted Dy . ..o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Stream Algorithms and Architecture
by

Henry Hoffmann

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2003, in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This work proposes stream algorithms along with a decoupled systolic archi-
tecture (DSA). Stream algorithms executed on a decoupled systolic architecture are
notable for two reasons. The floating-point efficiency of stream algorithms increases
as the number of processing elements in the DSA increases. Furthermore, the compute
efficiency approaches 100 % asymptotically, that is for large numbers of processors and
an appropriate problem size.

This thesis presents a methodology for structuring algorithms as stream algo-
rithms, a virtual computer architecture for efficiently executing stream algorithms,
and results gathered on the Raw[34] microprocessor that confirm that stream algo-
rithms achieve high performance in practice.

Thesis Supervisor: Anant Agarwal
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

First and foremost, the author would like to thank Volker Strumpen. Volker has
been instrumental in the development of the work presented in this thesis, and co-
authored the earliest publication of these ideas [15]. In addition to his technical help,
he has provided encouragement and a great deal of assistance improving the author’s
writing. It is safe to assume that this work would be far less mature and far more
difficult to read if not for Volker’s influence.

The author also thanks his advisor, Anant Agarwal, for supporting this work
and for encouraging the implementation of stream algorithms on Raw, which greatly
strengthened this thesis.

Special thanks go to Janice McMahon, Jeremy Kepner, and Bob Bond at MIT
Lincoln Laboratory for their support and encouragement.

Thanks also to friends and family who put up with the author’s moodiness and
bizarre schedule during the past two years.

This work was made possible by the financial support of Lincoln Laboratory’s

Lincoln Scholars Program, DARPA, the NSF and the Oxygen Alliance.

Contents

1 Introduction
1.1 Contributions,
1.2 Road Map e

2 Related Work
2.1 Architecture and Algorithmso 0oL

2.2 Stream Processing L o
3 A Decoupled Systolic Architecture

4 Stream Algorithms
4.1 Specifying Stream Algorithms

5 Matrix Multiplication

5.1 Partitioning
5.2 Decouplingo
5.3 Efficiency Analysis Lo

6 Triangular Solver

6.1 Partitioning Lo
6.2 Decoupling
6.3 Efficiency Analysis oL

7 LU Factorization

7.1 Partitioning Lo

19
25
26

29
29
31

33

37
42

45
45
46
48

51
02
93
95

59

7.2 Decoupling L 60

7.3 Efficiency Analysis o oL 63
8 QR Factorization 69
8.1 Partitioning Lo 71
8.2 Decouplingo 73
8.3 Efficiency Analysis oL 90
9 Convolution 97
9.1 Partitioning Lo 97
9.2 Decoupling o 98
9.3 Efficiency Analysis oL 101
10 Implementation on Raw 103
10.1 Matrix Multiplication 108
10.2 Triangular Solvero 111
10.3 LU Factorization 114
10.4 QR Factorizationo 115
10.5 Convolution e 120
10.6 Summary L e e e e e 122
11 Conclusion 125

List of Figures

1-1

1-2

1-3

1-4

3-1

A processor designed to efficiently compute the inner product ¢ = a-b.
The values of a and b are not stored in memory, but are transmitted

over the network. Lo 21
A systolic array for matrix multiplication. 21

An architecture supporting a decoupled systolic matrix multiplication.
Compute processors implement a systolic matrix multiplication, while
memory processors along the periphery of the compute array are re-

sponsible for storing data that will be used in later phases of computation. 24

The bar graph shows the ratio of the speed of a distributed memory
implementation of a matrix multiplication to that of a stream algorithm

implementation. All matrices are of size N x N. 25

A decoupled systolic architecture (DSA) is an R x R array of compute
processors (P) surrounded by 4R memory processors (M) as shown for
R = 8. Compute processors use fast memory in form of a register set
only. Each memory processor consists of a compute processor plus a

memory interface to a slow memory of large capacity. 33

A compute processor contains a general-purpose register set (GPR), an
integer unit (IU), and a floating-point unit (FPU) based on a multiply-

and-add module. The processor connects via FIFO’s to its four neighbors. 34

5-1

5-2

9-3

6-1

6-3

Seven time steps of a systolic matrix multiplication C' = A- B for 2 X 2
matrices. Each box represents a compute processor. Values entering,
leaving, or being generated in the array are shown in bold face. Shaded
boxes mark the completion of an inner product. The data flow of the
operands and products is split into the top and bottom rows. The
pseudo code executed by each processor in the systolic array is shown

in Figure 5-2.o

Pseudo code for compute processor p;; executing systolic matrix multi-
plication. One should note that this algorithm requires only a bounded

amount of storage to hold the values x, n, 7, j, R,and N..

Data flow of a compute-efficient matrix multiplication C' = A - B for
4 x 4 matrices on 2 X 2 compute processors. Shaded boxes on the
periphery mark memory processors, and indicate the completion of an

inner-product otherwise. o000

Systolic lower-triangular solver for N = 3 and two right-hand sides.
The pseudocode executed by each processor in the systolic array is

shown in Figure 6-2.o oo Lo

Pseudo code for compute processor p;; executing systolic lower trian-
gular solver. One should note that each processor requires a bounded

amount of storage to hold the values z, n, j, R.

Phases of a decoupled systolic lower-triangular solver on an R x R array
of compute processors. In phase 1, Equation 6.2 is solved for Xi;. In
phase 2, By; is updated according to Equation 6.4. While the matrix
multiplication is executed on the compute processors, the matrix sub-
traction is performed on the memory processors as they receive each
individual result of As; X1;. Finally, in phase 3, Equation 6.6 is solved
for Xs;. The shapes of the matrix areas indicate how the rows and

columns enter the compute array in a staggered fashion.

10

7-1

8-1

8-2

8-3

8-4

Systolic LU factorization for N = 3. Figure 7-2 shows the pseudocode
executed by each compute processor performing a systolic LU factor-

1ZALION. o o e e e s

Pseudo code for compute processor p;; executing systolic LU factoriza-
tion. Note that the storage of values ¢, j, z, and n requires a bounded

amount of storageonly. oL L L

Phases of stream-structured LU factorization on an R x R array of
compute processors, with N = 2R. Phase 1 factors A;; into L;; and
U, according to Equation 7.2. Phase 2 solves Equation 7.3 for Us,.
Phase 3 solves Equation 7.4 for Ly;. Phase 4 computes A, according
to Equation 7.5, performing the matrix subtraction on the memory
tiles. Finally, in phase 5 Al, is factored according to Equation 7.6.
The shapes of the matrices indicate that the rows and columns enter

the compute array in a staggered fashion.

The product of premultiplication G (i, j)T - A differs from A in rows i
and j only, while the product of postmultiplication A - G(i,) differs

from A in columnsiand jonly.

Systolic Givens computation for an M X R matrix, where M > R. The
figure illustrates the triangularization of a 4 x3 matrix A, such that R =
D12 G(4,3)T G(4,2)T G(3,2)T G(4,1)T G(3,1)T G(2,1)T - A. The
fast Givens transformation G(3, j) is represented by the pair (o, Gi;),
and §; = d; 12 Figure 8-4 shows the pseudocode executed by each

processor in the systolic array. [continued in Figure 8-3]
Continuation of Figure 8-2..

Pseudo code for compute processor p;; executing systolic Givens com-
putation. Here the code is shown for the phase that ouputs intermedi-
ate values of d to the bottom of the array. One should note that each
processor requires only a bounded amount of storage to hold the values

z,d, a, m, a, B, 7, 0, n, i, j, R, and M. [continued in Figure 8-5]

11

61

62

64

73

75
76

7

8-5

8-6

8-7

8-8

8-10

8-11

8-12

8-13

Continuation of Figure 8-4. [continued in Figure 8-6]
Continuation of Figure 8-5..

Systolic premultiplication for computing R and updating A according
to Equation 8.4. Figure 8-9 shows the pseudocode executed by each

processor in the array. [continued in Figure 8-8]
Continuation of Figure 8-7.. L.

Pseudocode for compute processor p;; executing systolic premultipli-
cation. Note that each processor requires only a bounded amound of

storage to hold the values of m, 7, j, a, x,and M.

Systolic postmultiplication for computing an R x M block of) =
IG(2,1)G(3,1)G(4,1)G(3,2)G(4,2)G(4,3)D~1/2. [continued in Fig-
ure 8-11] . . . L o

Continuation of Figure 8-10.

Phases of a stream-structured QR factorization on an R x R array of
compute processors, with M = 3R and N = 2R. In phase 1, one
triangularizes the left-most N/2 columns of A, producing R;; and a
set of fast Givens transformations as expressed in Equation 8.3. In
phase 2, the Givens transformations are applied to the right-most N/2
columns of A yielding Rjy, AY,, and A}, according to Equation 8.4. In
phase 3, one triangularizes the right-most columns of A according to
Equation 8.5. Phases 4-6 compute (); according to Equation 8.6, while
phases 7-12 compute) = (Q1()> according to Equation 8.8. Note that
phases 3 and 7-12 can be modified without loss of efficiency, so that
matrix) is not distributed across the top and bottom rows of memory

processors, but would be available on one sideonly.

(a) The fast Givens computation of Equation 8.3 (or Equation 8.5)
for column block i effects the bottom (o — i+ 1)R rows. (b) After
triangularizing column block 7, one updates the (op;—i+1)RX (oy—i)R

submatrix of A according to Equation 8.4.

12

82

83

84

86

87

89

8-14

9-2
9-3

10-1

10-2

One computes column block 7 of M x M matrix () by partitioning the
computation into oy row blocks, each with R rows and (op —i+1)R
columns. FEach row block is computed using a systolic postmultipli-
cation. After the postmultiplication, the hatched area of the matrix
holds the final values of (), while the shaded area comprises interme-

diate values.

Systolic convolution of input sequence a; of length M =5 with N =4
weights w;. Both the weights and input sequence are fed into the
linear array of R = 4 compute processors. Intermediate results are
shown above the corresponding processors. Value b% represents an
intermediate value of b, after the first ¢ products have been computed

according to Equation 9.1.o oL
Pseudo code for compute processor p; in systolic convolution.

Stream convolution of an input sequence of length M =5 with N =4
weights on a linear array of R = N/2 = 2 compute processors and
M = 2 memory processors. Value b;c’i represents the computation of
by when the outer summation of Equation 9.2 has been executed [
times and the inner summation has been executed 7 times. Note that
the memory tile on the right performs an addition to accumulate the

results of the partial convolutions.

The efficiency of the compute processors executing a stream-structured
matrix multiplication is shown as a function of N. The solid curve
represents the results predicted by the efficiency analysis for an ideal
DSA, while dotted curve represents measured results on Raw.

The efficiency of all processors (both memory and compute) executing
a stream-structured matrix multiplication is shown as a function of 0 =
N/R, where R = 4. The solid curve represents the results predicted
by the efficiency analysis for an ideal DSA, while the dotted curve

represents physical results measured on Raw.

13

93

99
100

101

111

10-3

10-4

10-5

10-6

10-7

10-8

The efficiency of the compute processors executing a stream-structured
lower triangular solver is shown as a function of N. The solid curve
represents the results predicted by the efficiency analysis for an ideal
DSA, while the dotted curve represents physical results using Raw to
implement a DSA.

The efficiency of all processors executing a stream-structured lower
triangular solver is shown as a function of 0 = N/R, where R = 4. The
solid curve represents the results predicted by the efficiency analysis
for an ideal DSA, while the dotted curve represents physical results

measured on Raw.,

The efficiency of the compute processors executing a stream-structured
LU factorization is shown as a function of N. The solid curve represents
the results predicted by the efficiency analysis, while the dotted curve

represents physical results measured on Raw.

The efficiency of all processors executing a stream-structured LU fac-
torization is shown as a function of o = N/R, where R = 4. The solid
curve represents the results predicted by the efficiency analysis for an

ideal DSA, while the dotted curve represents physical results measured

The efficiency of the compute processors executing a stream-structured
QR factorization and computing only R is shown as a function of N.
The solid curve represents the results predicted by the efficiency analy-
sis for an ideal DSA, while the dotted curve represents physical results

measured on Raw.

The efficiency of all processors executing a stream-structured QR fac-
torization, but omitting the computation of @) is shown as a function
of o = N/R, where R = 4. The solid curve represents the results
predicted by the efficiency analysis, while the dashed curve represents

physical results using Raw to implement a DSA.

14

114

115

116

117

118

10-9 The efficiency of the compute processors executing a stream-structured
QR factorization is shown as a function of N. The solid curve repre-
sents the results predicted by the efficiency analysis, while the dotted
curve represents results measured on Raw.

10-10The efficiency of the all processors executing a stream-structured QR
factorization is shown as a function of 0 = N/R, where R = 4. The
solid curve represents the results predicted by the efficiency analysis
for an ideal DSA, while the dotted curve represents physical results
measured on Raw.o oL

10-11The efficiency of the compute processors executing a stream-structured
convolution is shown as a function of the length N of the shorter vec-
tor. The solid curve represents the results predicted by the efficiency
analysis for an ideal DSA, while the dotted curves represents physical
results measured on Raw for three separate data sizes.
10-12The efficiency of all processors executing a stream-structured convo-
lution is shown as a function of ¢ = N/R, where R = 4 and N is
the length of the shorter vector. The solid curve represents the results
predicted by the efficiency analysis, while the dotted curves represents

physical results for three different data sizes using Raw to implement

15

120

121

122

16

List of Tables

11.1 Summary of stream algorithms. The table shows the number of com-
pute processors P and the number of memory processors M. In ad-
dition, the table compares the execution time 7" and compute effi-
ciency E and compares that to the maximum compute processor effi-

ciency achieved on a 4 x 4 configuration of Raw tiles, E,qyp.

17

18

Chapter 1

Introduction

Stream algorithms and the decoupled systolic architecture represent a holistic ap-
proach to algorithm and computer architecture design that together provide a scal-
able way to achieve efficient computation on a general purpose programmable com-
puter. This thesis shows that many important applications can be restructured as
stream algorithms and executed on a decoupled systolic architecture. Furthermore,
the floating-point efficiency of these algorithms increases as the number of processors
used to execute the algorithm increases.

This approach, combining algorithm and architecture development, is best illus-
trated through the simple example of the multiplication of two N x N matrices.
Matrix multiplication is usually represented by a standard triply-nested loop, the

core of which is an inner-product:

for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0, c[il[j]1=0.0; k<N; k++)
CLil1[j]1 += A[i][xI1*B[k1L[j]1;

Assuming that N is very large, these loops can be unrolled to effectively reduce the loop
overhead. Therefore the main source of inefficiency in this algorithm is the memory
operations required to load the values of A and B and to store the values of C. If the

processor on which this code is executed has a multiply-and-add instruction, then the

19

inner loop would execute two loads (one for the value of A and one for the value of B)
and a single multiply-and-add instruction for every loop iteration. Thus, for a single
issue processor, the maximum efficiency of this loop would be 33 %, ignoring all other
overhead (including cache misses and store instructions). Therefore, to increase the
efficiency of such an algorithm, one must consider methods of eliminating inefficient
memory operations from the critical path of the computation.

One method to eliminate the loads and stores associated with an inner product
on a single processor is to allow functional units to operate directly on data from the
network rather than from memory. Such an architecture must expose network accesses
to the programmer in the processor’s instruction set!. Assuming that such a processor
is connected to a neighbor on the north, south, east, and west and its instruction set
contains a floating-point multiply-and-add? instruction, one can rewrite the inner-

most loop of the matrix multiplication as:

for (k=0, c=0.0; k<N; k++)

fma ¢, ¢, $Wi, $N2

Here it is assumed that values of a arrive from the west on the network port rep-
resented by $W1, values of b arrive from the north on the network port represented
by $N2, and finally c is stored in a local register (c.f. Figure 1-1). The ability to
operate directly on data coming from the networks allows programmers to eliminate
memory operations. Therefore, one expects this version of the inner-product to run
at least three times faster than the initial version. However, one would still like to
exploit the parallelism of the matrix multiply and utilize additional processors in the
computation.

To efficiently incorporate other processors into the computation the instruction

set must expose network routing to the programmer. Such an interface allows pro-

!Exposing network resources to the programmer is a key design aspect of the Raw architec-
ture [34]. In fact, the networks in Raw are tightly integrated into the processor pipeline. This
is a design feature which earlier register-mapped network architectures including the Connection
Machine CM2 [13] and Warp [2] lack.

2 A floating-point multiply-and-add instruction or fma is defined such that after execution of fma
d, c, a, b; d has the value of c+ax*b.

20

c += a*b

A\

a \l_

Figure 1-1: A processor designed to efficiently compute the inner product ¢ = a - b.
The values of a and b are not stored in memory, but are transmitted over the network.

grammers to completely overlap communication and computation. Thus, one may

parallelize the matrix multiplication by rewriting the inner-most loop as:

for (k=0, ¢=0.0; k<N; k++)
fma c, c, $wWi, $N2 route $W1->$E1, $N2->$S2

and replicating this loop across multiple processors. This pseudo-assembly code per-
forms an fma instruction while simultaneously routing data from the west to the east
and from the north to the south. Again, such code has no memory operations and

efficiently incorporates many processors into the computation (c.f. Figure 1-2).

B(:,0) B(:,1)

NN
A(0,:) S > |

_r

RN
AL) N N

Figure 1-2: A systolic array for matrix multiplication.

The architecture described thus far is a programmable systolic array, and therefore

has similar benefits and drawbacks to a systolic array [21]. Users can write highly

21

efficient programs for such an architecture so long as the number of available proces-
sors matches the problem size. For example, an N X N matrix multiplication requires
an N x N array of processing elements. Thus, systolic arrays are highly efficient, but
also highly specialized for a single problem size. This specialization is at odds with
the goal of a general purpose programmable architecture.

A commonly accepted technique for overcoming the specialization of systolic ar-
rays is the simulation of multiple processing elements on a single systolic processor.
Such a processor uses local memory to store intermediate values of computation. If
the architecture is designed to support arbitrarily large problems, the amount of lo-
cal memory required is unbounded, and thus the local memory available on such a
processor must be large. Large memories require a load/store interface to handle
intrinsically long access times. Thus, simulation of a systolic array reintroduces the
original source of inefficiency: memory operations. Therefore, simulation is inade-
quate for highly efficient computation and other methods must be found to achieve
the benefits of systolic arrays but maintain the flexibility to compute arbitrarily large
problems on a general purpose architecture.

Out-of-core algorithms provide insight into how to divide up a large problem effi-
ciently among limited resources [37]. The goal of out-of-core algorithms is to efficiently
schedule computation on problems that are too large to fit into the main memory of
a particular processor. These techniques provide the inspiration to partition a large
problem into systolic phases, each of which can be solved without simulation given
the resources at hand. For example, suppose one is presented with an R x R array
of compute resources and an N x N matrix multiplication where N > R. One could
continuously apply the block-partitioning of Equation 1.1 until each of the block ma-
trices in the matrix multiplication can be computed systolically on an R X R array
of processing elements.

Cn Cr A Ap Bi1 By

= (1.1)
C'21 022 A21 A22 B21 BZ?

This technique allows one to apply systolic methods within a general purpose frame-

22

work without the inefficiency of simulation. However, using this partitioning requires
that one store those parts of the matrices that are not needed during a given systolic
phase of computation. Furthermore, the data must be accessed in a manner that does

not reintroduce memory operations to the critical path of computation.

Decoupled access execute architectures provide inspiration to completely separate
computation from memory accesses [30]. Data values only need to be accessed on
the edges of those processors that implement the systolic array. In this manner, pro-
cessors on the edges of the array are responsible for continuously accessing data and
sending it to those processors performing the actual computation. Therefore, the
systolic array of compute processors is augmented with memory processors. Memory
processors are given access to a large, but slow, memory while compute processors
have no access to local memory apart from a small, fast register set. Therefore, all
load/store operations are performed on memory processors, which send data into the
systolic array implemented by the compute processors. If one makes use of asymptot-
ically fewer memory processors than compute processors, the operations performed
on the memory processors become insignificant as the total number of processors
grows. An architecture consisting of an array of compute processors augmented with
a set of memory processors on the periphery is referred to as a decoupled systolic

architecture.

By applying this decoupling technique to the problem of matrix multiplication,
one can keep an R x R array of compute processors fully utilized using only 2R
memory processors. As shown in Figure 1-3, memory processors along the top of
the compute array are responsible for storing columns of one operand matrix, while
memory processors along the left side of the compute array are responsible for storing

rows of the other operand.

This decoupled systolic matrix multiplication represents a highly efficient compu-
tation on a general purpose decoupled systolic architecture. While the memory pro-
cessors contribute no useful computation, the compute processors implement highly
efficient matrix multiplications. In the process of decoupling the matrix multiplica-

tion, one requires asymptotically fewer memory processors than compute processors.

23

Memory

Processor:
i\‘ 01 02
Compute Processors

= (systolic array)

10 11 12

20 21 22

Figure 1-3: An architecture supporting a decoupled systolic matrix multiplication.
Compute processors implement a systolic matrix multiplication, while memory pro-
cessors along the periphery of the compute array are responsible for storing data that
will be used in later phases of computation.

Thus, as the total number of processors available increases, those executing memory
operations become insignificant. Therefore, the efficiency of such a matrix multipli-

cation increases as the number of processors increases.

To confirm the benefits of stream algorithms, one can compare the performance
of a stream-structured matrix multiplication to that of a distributed memory matrix
multiplication. The Raw microprocessor supports both paradigms of computation,
and thus serves as an ideal platform for this experiment. Both a stream algorithm and
a distributed memory algorithm for matrix multiplication have been implemented on
the Raw microprocessor. Figure 1-4 shows the ratio of the run time of the distributed
memory implementation to that of the stream algorithm implementation. When
the matrices are all square and of size 16 x 16, the stream matrix multiplication is
7.25 times faster than the distributed memory implementation. For problems of size
256 x 256, the stream version executes almost 16 times faster than the distributed
memory version. These results show the dramatic decrease in run-time that can be
achieved by using highly efficient stream algorithms3. The stream algorithms execute
so much faster than the distributed memory operations because stream algorithms

eliminate not only memory operations, but also cache misses.

The techniques presented for improving the performance of matrix multiplication

3The methodology for gathering these results and the implementation of stream algorithms on
Raw is discussed in greater detail in Chapter 10.

24

Dist. Mem. Run Time / Stream Run Time

16 —

12

10 I I I
16 32 64 128 256
N

Figure 1-4: The bar graph shows the ratio of the speed of a distributed memory imple-
mentation of a matrix multiplication to that of a stream algorithm implementation.
All matrices are of size N x N.

1

1

1

o N A O ®
|

can be generalized to serve as a framework for structuring many other parallel algo-
rithms in a highly efficient manner. The term stream algorithm is used to denote
an algorithm that has been partitioned into systolic phases and whose memory ac-
cesses have been decoupled from this systolic computation. When executed on a
decoupled systolic architecture, stream algorithms can achieve 100 % floating point

efficiency.

1.1 Contributions

The primary contribution of this thesis is the definition of a class of parallel algorithms
named stream algorithms and an abstract architecture referred to as a decoupled
systolic architecture, or stream architecture. Stream algorithms executed on a stream

architecture have several unique features:

e Stream algorithms achieve very high floating point efficiencies, and therefore

extremely fast run-times.

e In contrast to conventional wisdom, the efficiency of stream algorithms increases
as the number of available compute resources increases. Furthermore, the com-

pute efficiency of stream algorithms approaches 100 % asymptotically.

25

e Stream algorithms represent an excellent match for today’s microarchitectures,

which exploit fast, but short wires.

e Stream algorithms can be implemented on a general purpose architecture and
will execute efficiently if that architecture implements the features of a decou-

pled systolic architecture.

In addition to defining stream algorithms, this thesis makes the following contri-

butions:

e Stream algorithms are presented for several important problems, including QR

factorization, which has been traditionally difficult to parallelize.

e The real-world applicability of stream algorithms is demonstrated by evaluating
their performance on the Raw microprocessor, and it is shown that stream

algorithms can achieve high efficiencies in practice.

e Issues of concern for the practical implementation of decoupled systolic archi-

tectures are discussed.

Hopefully this work will serve as a starting point for future development of parallel

algorithms and architectures.

1.2 Road Map

The remainder of this thesis develops a methodology for developing architectures
and algorithms that support a streaming manner of computation. The remainder of
this work is organized as follows. Chapter 2 discusses related work in this area. In
Chapter 3 the decoupled systolic architecture is discussed. Chapter 4 formally defines
the notion of a stream algorithm, and the methodology for structuring algorithms as
stream algorithms. Then, five examples are presented: a matrix multiplication in
Chapter 5, a triangular system solver in Chapter 6, an LU factorization in Chap-

ter 7, a QR Factorization in Chapter 8, and a convolution in Chapter 9. For all

26

examples, it is shown how each problem can be reformulated using the stream struc-
turing methodology and that the resulting stream algorithm achieves 100 % efficiency
asymptotically when executed on a decoupled systolic architecture. In Chapter 10
all five examples are implemented on the Raw microprocessor, and the results are

compared to what one might expect from an ideal DSA.

27

28

Chapter 2

Related Work

This chapter describes the relationship of the work in this thesis to previous work in

architecture and algorithms and also in stream processing.

2.1 Architecture and Algorithms

The amount of transistors that fit onto a single chip has been growing steadily, and
computer architects are reaching the critical mass for realizing a general-purpose
parallel microarchitecture on a single chip. Research prototypes such as Trips [28],
Smart Memories [25], and Raw [34] represent the first steps into the design space of
tiled architectures, which are single-chip parallel machines whose architecture is
primarily determined by the propagation delay of signals across wires [14].

To enable high clock frequencies on large chip areas, tiled architectures have short
wires that span a fraction of the side length of a chip, and use registers to pipeline
the signal propagation. Short wires, in turn, introduce a scheduling problem in space
and time to cope with the propagation of signals across distances longer than those
reachable via a single wire. Moving data across wires and distributing operations
across processors are equally important scheduling goals. This scheduling problem
has received attention in the context of VLSI design [27], parallel computation [22],
and parallelizing compiler design [38] in the past.

The speed advantage of short wires has not gone unnoticed. In fact, systolic arrays

29

were proposed by Kung and Leiserson in the late 1970’s [21, 20], and aimed, in part,
at exploiting the speed of short wires. Lacking the chip area to support programmable
structures, however, early systolic arrays were designed as special-purpose circuits for
a particular application, and were customized for a given problem size.

Later systolic systems such as Warp [2] and iWarp [7] became programmable,
so they could reap the benefits of systolic arrays without sacrificing flexibility. The
Warp architecture has three principal components, a linear processor array composed
of Warp cells, an interface unit (IU) and a host. Each Warp cell contains a floating
point multiplier and a separate floating point adder, as well as several FIFOs that are
used to communicate with neighbors. The host is a general purpose computer that
provides data to the processor array via the interface unit. The IU is responsible for
generating addresses and loop control signals for the processor array. The individual
Warp cells do not contain integer units, although they do contain large local memories.
Therefore, the interface unit is given the responsibility of generating address values
and communicating these to the processor array. The Warp architecture is very
similar to the decoupled systolic architecture presented in Chapter 3, with only two

major differences:

1. Warp and iWarp decouple address generation, but not memory access itself,

from computation.

2. The FIFOs used by Warp cells are not integrated into the functional unit by-
passes. Thus, moving data from the FIFO to the register set requires an extra

step on Warp as opposed to a decoupled systolic architecture.

The designers of Warp and iWarp note that “memory access is typically a bottleneck
to performance” and thus they recommend systolic communication patterns in Warp
programs [7]. The use of the local memory on each cell was further encouraged by
the Warp compiler [12], which adopted a single-program, multiple-data view of the
machine, and specifically scheduled memory accesses on all Warp cells. However,
putting large local memories on each processing cell promotes inefficient simulation

of systolic arrays for large problem sizes.

30

However, the significant area and energy efficiency of systolic arrays merit their
reexamination in face of the architectural similarities to recent tiled microarchitec-
tures. To fully realize these benefits one must not resort to the simulation of systolic
arrays. An alternative, motivated by Decoupled Access/Execute Architectures [30] is
decoupling memory accesses entirely from computation.

The main feature of a decoupled access/execute machine is that the architecture
forces programs to be separated into two instruction streams that communicate via
architectural queues. One instruction stream is responsible for accessing operands,
while the other is responsible for executing operations on data. The decoupling
concept has even been applied to stream processing and vector machines [5]. However,
with today’s microtechnology providing an abundance of resources on a single chip,
it is possible to take this idea one step further and have multiple memory access units
feeding multiple execute units in parallel.

Nonetheless, the architectural solution of using decoupling rather than simulation
does not inform one of a method to efficiently execute relatively large problems on
a relatively small programmable array. The problem is similar conceptually to that
faced by the designers of out-of-core algorithms [37]. Out-of-core algorithms were
designed to efficiently perform computations on data sets that are too large to fit into
main memory and must be stored on disks. This class of algorithms provides insight
into scheduling data accesses to maximize data reuse. The same insights suggest ways
to schedule the computation of a large problem on a small programmable systolic

array.

2.2 Stream Processing

The notion of a stream abstract data type has been around for decades [1]. Recently
this subject has gained a great deal of attention as data streams present a useful
abstraction for a number of important applications such as digital signal process-
ing, multimedia processing, and network processing. Compiler writers [31, 36, 18],

computer architects [19], and algorithm designers [3, 4] have all worked to exploit the

31

stream data type for performance gains. This previous work shares two central design
principles with the work presented in this thesis: consider architecture and algorithms
simultaneously and schedule operations to reduce the overhead of memory accesses.

There are, however, some major differences between previous work in stream pro-
gramming and the work presented here on stream algorithms. Stream programming
has been traditionally based on the observation that many important problem do-
mains naturally contain a stream abstraction. Programming systems are then built
that exploit this abstraction. Not surprisingly, this work has the shown that the per-
formance of stream programming systems on streaming applications exceeds that of
a more general purpose approach.

The work of stream algorithms, on the other hand, is based on developing a sys-
tematic and principled approach to achieving scalable and efficient computation on a
general purpose architecture. Rather than focus on mapping streams into language
and hardware constructs, stream algorithms work to schedule instructions such that
operands are constantly streaming through functional units. Furthermore, stream
algorithms are evaluated on whether or not they achieve 100 % efficiency asymptoti-
cally. Where the focus of previous stream programming systems was on manipulating
the stream abstraction, the focus of stream algorithms is on efficient general purpose
computation.

The major thrust of this thesis is to present stream algorithms, which are based
on a unique combination of the ideas of systolic arrays, decoupled access/execute
architectures, and out-of-core algorithms. This work presents a principled methodol-
ogy for algorithm design and a general purpose computing architecture that together

achieve high efficiency and scalable performance.

32

Chapter 3

A Decoupled Systolic Architecture

A decoupled systolic architecture (DSA) is a set of characteristics that describe a
single-chip tiled architecture. In this sense, a DSA represents a virtual machine or an
abstract architecture. Any tiled architecture that implements all the characteristic

features described in this section can be referred to as a DSA.

Figure 3-1: A decoupled systolic architecture (DSA) is an R x R array of compute pro-
cessors (P) surrounded by 4R memory processors (M) as shown for R = 8. Compute
processors use fast memory in form of a register set only. Each memory processor
consists of a compute processor plus a memory interface to a slow memory of large
capacity.

A DSA is a set of processors connected in a mesh topology by a fast network of
short wires as shown in Figure 3-1. The DSA consists of an R x R array of compute
processors, augmented with 4R memory processors on the periphery of the

compute array. The peripheral memory processors are the distinguishing feature of a

33

El

Wi ﬂ}GPR U ﬂ}
iy -

w2

S1 S2

Figure 3-2: A compute processor contains a general-purpose register set (GPR), an
integer unit (IU), and a floating-point unit (FPU) based on a multiply-and-add mod-
ule. The processor connects via FIFO’s to its four neighbors.

DSA. Each of the memory processors consists of a compute processor with access to
an additional large memory. It is assumed that the memory can deliver a throughput
of two loads or one load and one store per clock cycle. The compute processors can
be implemented in one of many architectural styles with varying degrees of efficiency,
for example, VLIW, TTA, or superscalar. However, the choices for achieving 100 %
compute efficiency in an area-efficient fashion are more limited. As the DSA represents
an abstract architecture, this section focuses on the key architectural features for a

DSA without dwelling on the details of a particular instantiation.

The compute processor, shown in Figure 3-2, is a simple general-purpose pro-
grammable core comprising an integer unit, a floating-point unit with a multiply-
and-add module as the centerpiece, and a multi-ported, general-purpose register set.
The compute processor does not include a large local memory because of the intrinsic
physical constraint that large memories have larger latencies than small ones. Instead,
it has only a small but fast memory in the form of a register set. This lack of local
memory also serves to reduce the foot print of a compute processor and thus allows
more compute processors to be placed on a single chip. To focus attention on the
datapath, Figure 3-2 omits all of the control logic and a small instruction memory.
Each compute processor contains a single-issue, in-order pipelined FPU that allows

issue of one floating point multiply-and-add operation per clock cycle.

In addition to the floating point multiply-and-add unit, each compute processor

34

contains a high performance floating-point divide unit. Although, the number of
divisions in all examples is asymptotically insignificant compared to the number of
multiply-and-add operations, the latency of the divider can have a dramatic effect on
efficiency for smaller problem sizes. To reduce the severity of this effect, the latency
of the divider should be as small as possible and ideally, it should be fully pipelined!.

Arguably the most important feature of a DSA is the design of its on-chip net-
work. This interconnect uses two prominent features of Raw’s static network [34].
The network is register-mapped, that is instructions access the network via register
names, and it is a programmed routing network permitting any globally or-
chestrated communication pattern on the network topology. The latter is important
for stream algorithms that change patterns between the phases of the computation.
These features are discussed in more detail in the following paragraphs.

As illustrated in Figure 3-2, each compute processor uses blocking FIFO’s to con-
nect and synchronize with neighboring processors. These FIFO’s are exposed to the
programmer by mapping them into register names in the instruction set. The out-
going ports are mapped to write-only registers with the semantics of a FIFO-push
operation, and the incoming ports as read-only registers with the semantics of a FIFO-
pop operation. Furthermore, it is preferable fro the network to be tightly integrated
with the pipelined functional units. Accordingly, bypass wires that commonly feed
signals back to the operand registers also connect the individual pipeline stages to the
outgoing network FIFO’s. The tight network integration ensures low-latency commu-
nication between neighboring compute processors, and allows for efficient pipelining
of results from operations with different pipeline depths through the processor array.

The decoupled systolic architecture uses a wide instruction word to schedule mul-
tiple, simultaneous data movements across the network, between the functional units
and the network, as well as between the register set and the network. A typical DSA

instruction such as

fma $4,%$4,$N1,$W2 route $N1->$S1, $W2->$E2

LA floating point divider that meets these requirements is detailed in [24].

35

consists of two parts. The fma operation is a floating-point multiply-and-add com-
pound instruction. It multiplies the values arriving on network ports N1 and W2, and
adds the product to the value in general-purpose register $4. Simultaneously, it routes
the incoming values to the neighboring processors as specified by the route part of
the instruction. The value arriving at port N1 is routed to outgoing port S1, and the
value arriving at port W2 to outgoing port E2. Instructions of the decoupled systolic
architecture block until all network operands are available. Using small FIFO’s with
a length larger than one eases the problem of scheduling instructions substantially.
There exists a trade-off between the instruction width and the area occupied by the
corresponding wires within a processor. For the DSA, it is assumed that a maximum
of three data networks and five move instructions can be specified within the route

part of a single instruction.

36

Chapter 4

Stream Algorithms

In this section decoupled systolic algorithms, nicknamed stream algorithms!, are pre-
sented along with a set of conditions for which one can increase efficiency by increasing
the number of processors such that the compute efficiency approaches 100 %. Alter-
natively, one may view stream algorithms as the product of a program-structuring

methodology. There are three design principles that characterize stream algorithms:

1. Stream algorithms are structured by partitioning a large problem into sub-
problems and solving the subproblems systolically. Systolic designs are well
suited for parallel machines with a local interconnect structure and match the

DSA with its fast but short wires.

2. Stream algorithms decouple memory accesses from computation by ded-
icating processors to one of the two tasks. This idea is motivated by the De-

coupled Access/Execute Architecture [30].

3. Stream algorithms use M memory processors and P compute processors, such
that the number of memory processors M is asymptotically smaller than the

number of compute processors P, that is M=o(P).

!The name is derived from the fact that when executing at 100 % efficiency, all functional units
must receive a continuous stream of inputs. Such a notion of a stream is consistent with the colloquial
sense. According to Webster [26], a stream is “an unbroken flow (as of gas or particles of matter),” a
“steady succession (as of words or events),” a “constantly renewed supply,” or “a continuous moving
procession (a stream of traffic).”

37

By conforming to these design principles, stream algorithms abandon load/store op-
erations on compute tiles, and thus reduce the instruction count on the critical path.

The key strategy for the design of an efficient decoupled systolic algorithm is to
recognize that the number of memory processors must be negligible compared to the
number of compute processors, because memory processors do not contribute any
useful computation. While it is often impossible to design an efficient decoupled
systolic algorithm for a very small number of processors and a very small problem
size, one can actually increase the efficiency for larger numbers of processors and
large problem sizes. This observation is emphasized by formulating the decoupling-

efficiency condition.

Definition 1(Decoupling-Efficiency Condition)
Given a decoupled algorithm with problem size N and a network of size R,* let P(R)
be the number of compute processors and M(R) the number of memory processors.

Then, an algorithm is decoupling efficient if and only if

Informally, decoupling efficiency expresses the requirement that the number of
memory processors becomes insignificant relative to the number of compute proces-
sors as one increases the network size R. Decoupling efficiency is a necessary condition
to amortize the lack of useful computation performed by the memory processors. For
example, suppose one implements an algorithm on P = R? compute processors. If
one can arrange the memory processors such that their number becomes negligi-
ble compared to P when increasing the network size R, the resulting algorithm is
decoupling efficient. Thus, for a decoupling-efficient algorithm with P = ©(R?),
one may choose M to be O(lgR), or M = O(R), or M = O(RIgR). In con-
trast, a design with M = O(R?) would not be efficiently decoupled. Decoupled

2The network size R is used as a canonical network parameter. The number of processing nodes
is determined by the network topology. For example, a 1-dimensional network of size R contains R
processing nodes, whereas a 2-dimensional mesh network contains R? processing nodes.

38

systolic algorithms per se are independent of a particular architecture. Note, how-
ever, that the DSA shown in Figure 3-1 is particularly well suited for executing either
one such algorithm with (P, M) = (©(R?), ©(R)) or multiple algorithms concurrently
with (P, M) = (©(R),0(1)).

Decoupling efficiency is a necessary but not sufficient condition to guarantee high
performance. One determines the compute efficiency of a stream algorithm with
problem size N on a network of size R from the number of useful compute opera-
tions C'(N), the number of time steps T'(V, R), and the area counted in number of
processors P(R) + M(R):

C(N)

EWNR) = 58 By - (P(R) + M(R))

(4.1)

The product of time steps and area can be interpreted as the compute capacity of the
DSA during time period T'. For all practical purposes, one may relate the problem
size N and network size R via a real-valued o such that N = oR. Substituting
oR for N in Equation 4.1, compute efficiency is defined by means of the following

condition.

Definition 2(Compute-Efficiency Condition)
An algorithm with problem size N is compute efficient when executed on a network

of size R, if and only if

lim E(o,R) =1,

o,R—0
where N = oR.

Equation 4.1 implies a necessary condition for obtaining a compute-efficient algo-
rithm: either the number of memory processors M = 0 or the algorithm is decoupling
efficient. If one operates a compute array without any memory processors it is a sys-
tolic array. If one is concerned with a general purpose architecture, rather than a
highly specialized systolic case, compute efficiency implies decoupling efficiency as a

prerequisite. Thus, with decoupling efficiency as necessary condition for achieving

39

100 % compute efficiency asymptotically, every compute-efficient stream algorithm is
decoupling efficient, whereas the converse is not true. The compute-efficiency con-
dition requires that both R — oo and ¢ = N/R — oo. Thus, in practice stream
algorithms require that N > R, which is a realistic assumption since using a very
large network implies that one intends to solve a very large problem. For o =1, the
problem size matches the network size, and one operates the network as a systolic
array. Since decoupling-efficient stream algorithms use an asymptotically smaller
number of memory processors than compute processors, one may view stream al-
gorithms as a subset of systolic algorithms with a restricted number of inputs and
outputs. Inversely, one may view a systolic algorithm as a special case of a stream
algorithm that is distinguished by ¢ =1 in N = ¢ R. The trade-off between N and R
is discussed during the discussion of stream algorithms below.

Before presenting concrete examples of stream algorithms, a general stream-

structuring methodology is outlined, which consists of three steps:

Partitioning: Given a problem with ¢ > 1 in N = oR, that is the problem size N
is larger than the network size R, one starts by partitioning the problem into
smaller, independent subproblems. Each of the subproblems as well as the
composition of their results must be suitable for parallelization by means of a
systolic algorithm such that the compute processors access data in registers and
on the network only. For simple data-parallel applications, the partitioning can
be obvious immediately. For applications with more complicated data depen-
dencies, recursive formulations and partitioning methods like those developed
for out-of-core algorithms [37] can be helpful. To simplify the design of the
systolic algorithm, retiming [23] may be used. It allows one to start the design
with a semi-systolic algorithm, which can be transformed automatically into a
systolic algorithm if one exists [22]. The design of a semi-systolic algorithm can
be significantly easier than that of a systolic version, because it permits the
use of long wires that extend beyond next-neighbor processors. Note that the
design of stream algorithms themselves are not concerned with wire length or

the physical constraints of wire delay[14]. Rather, these limits are concerns that

40

must be taken into account for a practical implementation of stream algorithms

and a decoupled systolic architecture.

Decoupling: The goal is to move the memory accesses off the critical path. To this
end, one must decouple the computation such that the memory accesses occur
on the memory processors and compute operations on the compute processors.
For a systolic problem, the memory processors feed the input streams into the
compute processors, and the decoupling procedure is almost trivial. However,
the composition of several subproblems requires careful planning of the flow of
intermediate data streams, such that the output streams of one systolic phase
can become input streams of a subsequent phase without copying streams across
memory processors. Occasionally, it may be beneficial to relax the strict dedi-
cation of memory processors to memory accesses, and compute portions of the
composition of the subproblems, such as reductions, on the memory processors
themselves. Therefore a fully-fledged compute processor is integrated into each

memory processor of the DSA.

Efficiency Analysis: After partitioning and decoupling, one has designed a stream
algorithm. To qualify as a compute-efficient stream algorithm, however, it is re-
quired that the compute-efficiency condition holds. Therefore, the choice of the
number of memory processors must be asymptotically smaller than the number
of compute processors, and one must show that E(o, R) approaches 1 for large
values of R. Meeting the compute-efficiency condition requires that one sched-
ules the subproblems for optimal pipelining on the compute array. Experience
shows that one may need to iterate over the partitioning and decoupling steps

until a compute-efficient solution is found.

One may emphasize the concept of a stream algorithm by considering what a
stream algorithm is not. (1) A stream algorithm is not a collection of N tasks that
is scheduled on R < N processors, using time sharing and context switching to
guarantee progress. Instead, a stream algorithm is a computation structured such

that the schedule of individual tasks is determined by the order of elements in the

41

data streams and is primarily organized by the memory processors. Also, (2) a
stream algorithm does not simulate [N/R] = [o] processors of a systolic array on
one compute processor. While simulation of a systolic array is a generally applicable
method for executing a parallel algorithm of problem size N on R < N processors,
each of the R processors needs an unbounded amount of memory to store the state
of each of the [o] subproblems, and consequently additional instructions must be
executed to manage a large local memory. In contrast, stream algorithms avoid local
memory accesses entirely by decoupling the computation from memory accesses, and

moving the memory accesses off the critical path.

4.1 Specifying Stream Algorithms

The systolic algorithms executed on the compute processors in the following sections
of this thesis are specified in pseudocode. The pseudocode used here is based pri-
marily on that of Cormen, Leiserson, and Rivest [8], and conforms to the following

conventions.

1. Programs for the compute processors are specified in a single-program, multiple-
data or SPMD manner. Thus, a single program is executed on all compute

Processors.
2. Indentation indicates scope and block structure.

3. The for loop construct has the same interpretation as in the Turing program-

ming language [16].
4. The conditional constructs if, else if, and else are all supported.

5. Registers are specified by letters. The letters ¢ and j are reserved to hold the
coordinates of the compute processor within the array. Register ¢ holds the

processor’s row, while register j holds the column.

6. Registers M, N, and R are all reserved to hold the values of the problem size

(M, N) and the network size (R) for a particular invocation.

42

7.

8.

9.

10.

11.

The assignment operator is .
Standard mathematical operators are supported.

Network ports are directly addressable by the construct Net(dir), where dir
can take on the value north, south, east, or west. There are three networks in
each direction. They are differentiated by appending a number to the direction.
For example, Net(north2) specifies the second network port on the north. Each
network port can communicate one word in each direction simultaneously. The
network ports are implemented as FIFO’s and can be operated on as registers,
with two exceptions. If the network port appears as an operand, its value is
consumed. If the network port is assigned a value, that value is transferred
to the processor in the corresponding direction. For example, the statement
x <Net(north) assigns register = the value on the first of the processor’s north-
ern input networks. The statement Net(south2) <— 2 moves the value in register

x out of the processor, to the south, on its second network.

In addition to specifying assignment and mathematical operations of registers
and network ports, a single instruction may execute up to five move instruc-
tions. Generally, these instructions will involve moving data from the network
into registers, or routing data from one network input to a network output.
The pseudocode uses the route keyword to denote the part of the instruction
that contains all moves that do not include mathematical operations. Move
operations are specified with the — operator. For example, the instruction

x < z+Net(north) x y, route Net(north) —Net(south)

assigns register x the value of z plus the product of register y and the value
on the first northern input network. Simultaneously the instruction routes the

value from the first northern input network to the first southern output network.

All operations, including the move operations that are specified by the route
instruction execute concurrently. Thus, the value in a register or on a network

port may be routed to many different networks or registers simultaneously.

43

12. Instructions which only execute data movement may be specified by the con-
struct
nop route ...
which will perform all the move operations specified by the route, but will not

execute any other operations.

13. Operator precedence is the same as in the Turing language.

44

Chapter 5

Matrix Multiplication

As the first example of a stream algorithm, consider a dense matrix multiplication.
Given two N X N matrices A and B, one wishes to compute the N x N matrix C' = AB.
Element ¢;; in row ¢ and column j of product matrix C' is the inner product of row 4

of A and column j of B:

N
Gj = D G- by, (5.1)
P

where 1 <4,5 < N.

5.1 Partitioning

One may use a block-recursive partitioning for the matrix multiplication, recursing

along the rows of A and the columns of B:

Ci Cio An
= (Bi1 Bis) . (5-2)
Co Oy Ay

For each of the matrices Cy;, Cj; = A;1B1; where A;; is an N/2 x N matrix and
Bij an N x N/2 matrix. Thus, the matrix multiplication can be partitioned into a

homogeneous set of subproblems.

45

5.2 Decoupling

Each product element ¢;; can be computed independently of all others by means
of Equation 5.1. In addition, Equation 5.2 allows one to stream entire rows of A
and entire columns of B through the compute processors. Furthermore, one must
partition a problem of size N x NV until the Cj; are of size R x R and fit into the array
of compute processors. One then implements the resulting subproblems as systolic
matrix multiplications, illustrated in Figure 5-1 for N = R = 2. Figure 5-2 shows the
pseudocode executed by each processor performing the systolic matrix multiplication.
Rows of A flow from the left to the right, and columns of B from the top to the bottom

of the array.

b22

by ba by,
b1y ' by bip b2,
b by bi b,,
apag ap u
an A |ay g
b b b b b
Az Ay Az Ay az a2111 32112 32221 a2112 azzzz
c Cn Cio
Can 1é Cp |—> o
1
c Co Co
Ca 2(1; Copp |—> —
22

) @ ©) 4 ®) (6) @)

Figure 5-1: Seven time steps of a systolic matrix multiplication C' = A - B for 2 x 2
matrices. Each box represents a compute processor. Values entering, leaving, or being
generated in the array are shown in bold face. Shaded boxes mark the completion of
an inner product. The data flow of the operands and products is split into the top
and bottom rows. The pseudo code executed by each processor in the systolic array
is shown in Figure 5-2.

For N > R, the compute processor in row r and column s computes the product
elements c;; for all i mod R = r and j mod R = s. To supply the compute pro-
cessors with the proper data streams, one uses R memory processors to store the
rows of A and R additional memory processors to store the columns of B. Thus, for
the matrix multiplication, one uses P = R? compute processors and M = 2R mem-
ory processors. Figure 5-3 illustrates the data flow of a decoupled systolic matrix
multiplication for N = 4 and R = 2. Note how the memory processors on the pe-

riphery determine the schedule of the computations by streaming four combinations

46

z +— 0

ifiZRand j#R
forn:1.. N
x < x+ Net(north) x Net(west) route Net(north) — Net(south),
Net(west) — Net(east)
forn: 1..5—-1
nop route Net(west) — Net(east)
Net(east) < z

elseif i # Rand j =R
forn: 1.. N
x <« x4+ Net(north) x Net(west) route Net(north) — Net(south)
forn: 1..5-1
nop route Net(west) — Net(east)
Net(east) < z

elseif i=Rand j # R
forn: 1.. N
x < x4+ Net(north) x Net(west) route Net(west) — Net(east)
forn: 1..5-1
nop route Net(west) — Net(east)
Net(east) « =z

elseifi=Rand j=R
forn: 1.. N
x « x4+ Net(north) x Net(west)
forn: 1..5-1
nop, route Net(west) — Net(east)
Net(east) « =z

Figure 5-2: Pseudo code for compute processor p;; executing systolic matrix multi-
plication. One should note that this algorithm requires only a bounded amount of
storage to hold the values z, n, i, j, R, and N.

47

of rows of A and columns of B into the compute processors. First, C;; is computed
by streaming {A(1,:), A(2,:)} and {B(:,1), B(:,2)} through the array. Second, one
streams {A(1,:), A(2,:)} against {B(:,3), B(:,4)}, third, {A(3,:), A(4,:)} against
{B(:,1), B(:,2)}, and finally {A(3,:), A(4,:)} against {B(:,3), B(:,4)}. As a result,
one computes C11, C12, Cy1, and Cyy in that order.

If product matrix C' cannot be streamed into a neighboring array of consuming
compute processors or off the chip altogether, but shall be stored in memory proces-
sors, one may have to invest another R memory processors for a total of M = 3R.
In any case, P = ©(R?) and M = O(R), and hence M = o(P). Thus, this decoupled

systolic matrix multiplication is decoupling efficient.

Note that one could use a similar organization to compute a matrix-vector prod-
uct Az, where A is an N x N matrix and z an N X 1 vector. However, using only
one column of R X 1 compute processors requires M = R + 1 memory processors.
Since M # o(P), this organization is not decoupling efficient. However, there exists
a different design that is decoupling efficient by storing matrix A and vector x on
one memory processor and by distributing the inner products across a linear array
of compute processors. Such a distributed inner-product is the key to a decoupling

efficient convolution (cf. Chapter 9).

5.3 Efficiency Analysis

The number of multiply-and-add operations in the multiplication of two N x N ma-
trices is C(N) = N3. On a network of size R with P = R? compute processors and
M = 2R memory processors, one pipelines the computation of (N/R)? systolic matrix
multiplications of size R X N times N x R. Since this pipelining produces optimal
processor utilization, and the startup and drain phases combined take 3R time steps

(cf. Figure 5-3), the total number of time steps required by this computation is

Trum(N,R) = (N/R)*R+ 3R.

48

B(:,3)|B(:.4) B(:,3)[B(:.4) B(:,3) [B(:.4) B(:,3)[B(:.4) B(:,3)|B(:4) B(:,3)[B(:,4) B(:,3)[B(:,4)
B(;,1)[B(:,2) B(;,1)[B(:,2) B(;,1)[B(:,2) B(;,1)|B(:,2) B(:1)|B(:,2) B(:,1)|B(:,2) B(:,1)|B(:2)
A(L,2) A@:) by, A@L:)| by| by, A1) by| bz A1) byl by, A1) by by, AL:)| bl by
AB.) AB.)|an AB))|a1 |3y AB)[1s [312 AB)|@14 |13 AB)a1 |1 AB))|a1, |3y
AR, AR,:) AR,:) by AR,:)| ba| by A@2;)| bg| bz A@2;)| by| by, A@2;)| bu| by,
A@4.) A4.) A3 A@)|822 |8y A3z |32 A(4,)|32 |33 A(4,)[321 |8y
(€ @) (©) 4 (©) (6))
B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3) |B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)B(:,4) B(:,3)B(:,4)
B(:,1) [B(:,2) B(;,1)[B(:,2) B(;,1)[B(:,2) B(;,1)|B(:,2) B(:;,1)|B(:,2) B(:,1)|B(:.2) B(:,1)|B(:2)
A1) byl Dz €22 AL)| by bas A)| by| by, AL)| ba| bia| C13 A®L)| by| bzl Cu AW)| byl ba A@)| by by,
AB)) a1z |31 AB)31s 313 AB)as |81 ABH) 3z |8z AB:)as |8 AB:)a3s |ass AB:)as |81
A@:) bas| bu| S |A@:)| b bz| €22 [A@))] bl by, A@3)| bu| by, A@R3)| bar| bi| C2s |A@)| bu| ba| €20 [A@))] bl by,
A(4)|322 |82 A@4,)|223 |82 A(4,)|24 |23 A(4)2a1 |8p4 A48 |Aa A(4)| 3 R4z A(4,)| %2 23
(©) (C) (10 (11) (12 (13 (14
B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4)
B(:,1) [B(:,2) B(:1) [B(:,2) B(:1) [B(:,2) B(:1)|B(:,2) B(:1)|B(:.2) B(:1)|B(:.2) B(:,1)|B(:2)
A®L)| by bua| s JAQR)| byl bzl Ca2 ALY bl ba A(,) b,, A(l,) Cas [A(L) Csu [A@)
AB:) Az |8s AB))as |as AGB)|[A34 (s AB.) Qg AB:) AB:) AB:)
A@23)| bl b, A@R:)| bas| bu| a1 |A@)| b baf €2 [A@))] bl by, AR,) b,, A2,) Ci [A@)
A4)3a |Bag A@4,)8z |8y A@)) 34 |Aa2 A(4)|a |3ss A(4,) Ay A(4,) A4,)
(15 (16) (17 (18) (19 (20) (21

Figure 5-3: Data flow of a compute-efficient matrix multiplication C = A- B for 4 x 4
matrices on 2 X 2 compute processors. Shaded boxes on the periphery mark memory
processors, and indicate the completion of an inner-product otherwise.

According to Equation 4.1, the floating-point efficiency of the matrix multiplication

is therefore

NS
(N/RPR+3R) - (R* + 2R)’

Emnm(N,R) =

Using 0 = N/R instead of parameter N, one obtains

o3 R
o3+3 R+2

for the efficiency. Consider each of the two product terms independently. The term
0®/(0® + 3) represents the efficiency of the compute processors, and approaches 1
for large values of 0. On the other hand, term R/(R + 2) represents the maximum
efficiency expected when using a network of size R. This second term also approaches 1
for large network sizes R. If one assumes a constant value o > 1, one finds that the
efficiency of the matrix multiplication increases with an increase the network size, and
approaches the optimal floating-point efficiency of 100 % asymptotically. Also note
that for a fixed o, the stream matrix multiplication requires T(N) = (62 + 3/0)N =

O(N) time steps on a network with (N/o)? compute processors.

49

In practice, the network size R is subject of a delicate trade-off. To maximize
efficiency, one wants to maximize both terms in Equation 5.3. Thus, given a problem
size N, to increase the first term, one wants to increase 0 = N/R and, hence, de-
crease R. On the other hand, to maximize the second term, one wants to increase R.
To determine a good value R for implementing a DSA, one may consider some ab-
solute numbers. For example, if N = R, that is ¢ = 1, one has a systolic matrix

multiplication with
R

1

E,nc=1,R)=--——.
(o) =1 R+2

Thus, the maximum efficiency is just 25 % even for an infinitely large network. On

the other hand, for a relatively small value o = 8, one has

R
E,. (0=8R)=099 —
(o) R+ 2

Hence, for a network size of R = 16, a compute-efficient matrix multiplication of
problem size N = 8 - 16 = 128 achieves almost 90 % efficiency. Larger problem sizes

and larger networks operate above 90 % efficiency.

20

Chapter 6

Triangular Solver

A triangular solver computes the solution z of a linear system of equations Az = b
assuming that matrix A is triangular. Consider an example with a 4 x 4 lower-

triangular matrix A.

ail 0 0 0 T b1
az axp 0 0 To by
az; azx azz 0 T3 bs
Q41 G4z (43 Q44 Ty by

Finding solution z is a straightforward computation known as forward substitu-

tion:
by
r = —
ai
1 i—1
r, = — bi—Zaijxj for 122,3,,]\7
Qg j=1

Triangular solvers serve as building blocks of other stream algorithms including
LU factorization. Of particular interest is the lower-triangular version that finds
an N x N matrix X as the solution of AX = B, where B is an N x N matrix

representing N right-hand sides.

o1

6.1 Partitioning

One should partition the lower-triangular system of linear equations with multiple
right-hand sides recursively according to Equation 6.1'. Matrices A;; and Agy are
lower triangular.
Anp 0 X1 X _ Bi1 By (6.1)
Ay Agy Xo1 Xop By B
The partitioned triangular form leads to a series of smaller problems for the lower-

triangular solver:

AnXy = Bp 6.2

=2}
w

A11X12 = B12

Bél = BQI_AQIXII

()]
=~

Bég = B22_A21X12

D
ot

A22X21 = Bé1

=2}
(=2}

(6.2)
(6.3)
(6.4)
(6.5)
(6.6)
ApXey = B, (6.7)

6.7

First, one computes the solution of the lower-triangular systems in Equations 6.2
and 6.3, yielding X;; and X;,. These solutions are used subsequently to update
matrices By, and By in Equations 6.4 and 6.5, producing Bj, and B),. One may
compute the matrix subtraction in Equations 6.4 and 6.5 on the compute processors
of the array. However, the associated data movement can be saved by executing the
subtraction on the memory processors. This alternative is simpler to program as
well. Matrices Bi;, and Bi, are the right-hand sides of the lower-triangular systems
in Equations 6.6 and 6.7. Solving these systems yields X5, and Xgy. Thus, Equa-
tions 6.2-6.7 define a recursive algorithm for solving the lower-triangular system of
Equation 6.1. The recursion reduces the problem of solving a lower-triangular system

of linear equations into four smaller lower-triangular systems of linear equations, plus

rony and Toledo proposed this partitioning of the a triangular solver [17].

52

two matrix multiplications that have been discussed in Chapter 5 already.

6.2 Decoupling

To arrive at a decoupled design, one begins by observing that the computations for the
individual right-hand sides of the linear system AX = B are independent. Consider
the following system for N = 3 and two right-hand sides.

anp O 0 T11 T2 bii b2
az az 0 To1 T2z = ba1 boo
a3; G322 Q33 T31 T32 b31 32

The computation of column j of X depends on the elements of A and the elements
of column j of B only, which means that computations of columns of X may be
performed independently.

Figure 6-1 depicts the data flow of the systolic algorithm for a lower-triangular
solver, while Figure 6-2 shows pseudocode executed by each compute processor in
the systolic array. Rows of A are streamed from the left to the right and columns
of B from the top to the bottom of the compute array. Columns of X stream from
the bottom of the array. The processor p;; in row ¢ and column j of the compute
array is responsible for computing element z;;. Note that due to the independence of
columns in this computation one may permute the columns of B arbitrarily, provided
the staggered data movement is preserved. One can also use the systolic design of
Figure 6-1 for an upper-triangular solver by reversing the order in which the rows
of A are stored on the memory processors, and by reversing the order in which the
elements of the columns of B are fed into the compute processors.

The systolic algorithm is illustrated by describing the computation of element x3; =
(b31 — a31211 — a3e®a1)/ags, beginning with time step 4 in Figure 6-1. Processor ps;
receives element z;; from po; above and as; from the left, and computes the inter-
mediate result s = az; - x1;. At time step 5, processor ps; receives element z9; from

above and a3y from the left. Executing a multiply-and-add operation, p3; computes

23

bg by b3,
[SPYRRN 2P bs by
b1y - b21 b12
by
all a
11 X
11
ayay - 228z
a33 a32 a31 . * a33 a32 a31 .
(1 2
b,
by by b3,
[SPYRRN | 2P% ba; |ba b3,
ay
X12
X1 by, X1z ba; b,,
Ay 1 Az r @y u ax u
X21 X2
Xll le x12
833 A3, A3y A3z Az s Az s (A3 Vv
t
#Xu
r=ay Xy S=ag Xy t=s+tag Xy
U=as Xypp V=85 Xgp
©) 4 @)
bs,
b3y X2 bz,
A3 |Ax v Az
t Xal w w Xz

¢X21 ¢X12 ¢X31 ¢Xzz ¢X32

W =V +ag Xy,

(6)] (8)

Figure 6-1: Systolic lower-triangular solver for N = 3 and two right-hand sides. The
pseudocode executed by each processor in the systolic array is shown in Figure 6-2.

intermediate result ¢ = s + aso - T21. At time step 6, processor ps; receives azz from
the left and b3; from py; above, and computes z3; = (b3; — t)/az3. During the next

time step 7, element xz3; is available at the bottom of the array.

When reducing a problem of size N x N recursively until the subproblems fit
into an R x R array of compute processors, one needs 3R memory processors on
the periphery of the compute array to buffer matrices A, B, and X. Figure 6-3
shows the computation of X;; and X5; by means of Equations 6.2, 6.4, and 6.6. As
implied by this figure, R memory processors are used to store the rows of A, and R
memory processors store the columns of B and X, respectively. Thus, for a decoupled

systolic lower-triangular solver, one requires P = R? compute processors and M = 3R

o4

z «— 0

if j £R
forn:1..57—1
x < x+ Net(north) x Net(west) route Net(north) — Net(south),
Net(west) — Net(east)
Net(south) < (Net(north) — z)/Net(west)
forn: j+1.. R
nop route Net(north) — Net(south)
else
forn: 1..5-1
x < x4+ Net(north) x Net(west) route Net(north) — Net(south)
Net(south) < (Net(north) — xz)/Net(west)

Figure 6-2: Pseudo code for compute processor p;; executing systolic lower triangular
solver. One should note that each processor requires a bounded amount of storage to
hold the values x, n, j, R.

memory processors, meeting the decoupling-efficiency condition M = o(P).

Unlike the matrix multiplication, the factorization of the triangular solver does not
produce identical subproblems. Therefore, one is faced with the additional challenge
of finding an efficient composition of these subproblems. Although the subproblems
can be pipelined, one cannot avoid idle cycles due to data dependencies and the het-
erogeneity of the computations in Equations 6.2—6.7. However, this loss of cycles can
be minimized by grouping independent computations of the same type, and pipelining
those before switching to another group. For example, one can group and pipeline
the computations of Equations 6.2 and 6.3, then Equations 6.4 and 6.5, and finally
Equations 6.6 and 6.7. If one unfolds the recursion all the way to the base case of
R x R subproblems, the best schedule is equivalent to a block-iterative ordering of

the subproblems.

6.3 Efficiency Analysis

The efficiency of the lower-triangular solver is computed according to Equation 4.1.

The number of floating-point multiply-and-add operations is C'(N) = N*/2, assuming

)

4R

B2 3R
By B
C-N o
T0 0
- -
Aur TR Az
R R
Ay N
Lo
Xip T2R Xop T2R
Xi1
T3R T3R
T T

(&N @) @)

Figure 6-3: Phases of a decoupled systolic lower-triangular solver on an R x R array
of compute processors. In phase 1, Equation 6.2 is solved for X;;. In phase 2, B is
updated according to Equation 6.4. While the matrix multiplication is executed on
the compute processors, the matrix subtraction is performed on the memory proces-
sors as they receive each individual result of A5y X;;. Finally, in phase 3, Equation 6.6
is solved for X5;. The shapes of the matrix areas indicate how the rows and columns
enter the compute array in a staggered fashion.

that a division is no more costly than a multiply-and-add operation.

To calculate the number of time steps required by the stream-structured trian-
gular solver, one uses a block-iterative schedule to group and pipeline independent
subproblems. The partitioning is applied until A, X, and B are ¢ x ¢ block matrices
where each block is an R x R matrix. As an example of the block-iterative schedule,

consider the case when o = 4 represented by Equation 6.8.

An 0 0 0 X X2 Xz Xug By Bz Biz Bu
Ay A 0 0 Xo1 Xoo Xoz Xoy _ Bs1 Byy Bz By (6.8)
Az Az Az 0 X31 X3 Xzz Xsa B3 B;s; Bz Bss
Ap A Az Au Xy Xao Xaz Xu By By By By

Consider the computation of row block 7 of X, that is X;;. This row block is computed
after blocks Xj; where £ < ¢ and after updates to B. These updates are made by
computing B,’Cj = By — Zf:o Ak Xg; for all k£ and j where £ <iand 1 <j <4. To

compute row block 7 of X, one then solves A;;X;; = B;; for all j where 1 < j < 4.

26

Having completed this step, one must further update all B’ values by computing
By; = By; — A X;; for all k and j where i < k,j < 4.

In general, one wants to determine the number of time steps required to compute
a row block of X for an arbitrary value of 0. Computing the row block i of X
requires a single triangular solver for each R x R submatrix in the row block (as
in Equations 6.2-6.3), and there are o such blocks in each row. Each triangular
solver is independent, thus all the solvers for one row can be pipelined. Because the
inputs into the array are staggered, it takes R time steps to fill the pipeline and R
more to drain it. When, executing in steady-state, each triangular solver takes R
time steps to execute. Therefore, each block of rows in X requires cR 4+ 2R time
steps for the triangular solvers. Once the values of X are found, one must update
the rows of B as in Equations 6.4-6.5. There are ¢ — ¢ row blocks of B that need
to be updated, and each block requires ¢ multiplications of R x R matrices, all
of which are independent and can be pipelined. R time steps are needed to start
the matrix multiplication pipeline, 2R to drain it, and a total of o(c — ¢) matrix
multiplications will be performed. Thus, updating the remaining blocks of the matrix
requires (0 —i) R+3R time steps. One may overlap the computation of the triangular
solvers and the matrix multiplications by R time steps each.

One computes the total number of time steps required by the stream-structured
lower-triangular solver by summing the time steps required to compute each row block
of X. There are o row blocks. Thus, the total execution time is the sum of all the
time steps needed for the solvers for each row block plus the sum of all time steps
needed for matrix multiplications for each row block minus the sum of all time steps

of overlap between the solvers and the matrix multiplications:

Tus(o,R) = i(aR +2R) + (S(o—(a —i)R+3R) — Ui R

=N

(0 + 0 + 60 — 2).

For a fixed o, the total number of time steps is T(N) = O(N) when using (N/o)?

compute processors.

o7

According to Equation 4.1, the floating-point efficiency of the compute-efficient
lower-triangular solver is then

o3 R

Eus(0,R) = : .
s (0, I?) 03 +02+60—2 R+3

(6.9)

Analogous to Equation 5.3 for the matrix multiplication, the efficiency is the product
of two terms, one depending indirectly on the problem size N via o, and the second
depending on the network size R. Again, the first term represents the efficiency of
the compute processors, while the second term represents the maximum efficiency
given the network size. When o = 1, the problem reduces to a single systolic lower-

triangular solver, and one obtains an efficiency of

Elts(O'Zl,R): R—{—3

=

The efficiency increases when one increases R and o, such that the floating-point
efficiency approaches the optimal value of 100 %. Since the solver requires memory
processors along three sides of the array of compute processors, the second term
requires a slightly larger network size to achieve high efficiency. For example, for a
very large o, Eus(R) ~ R/(R + 3), and one achieves more than 90 % efficiency for
R > 27.

o8

Chapter 7

LU Factorization

The LU factorization transforms an N x N matrix A into two N x N matrices L and U,
such that L is lower-triangular, U is upper-triangular, and A = LU. Furthermore, this
treatment of the LU factorization requires that for all diagonal elements of L = (I;;),

liizl, Wherelgng

7.1 Partitioning

The LU factorization is partitioned according to Equation 7.1!. Matrices L;; and Loy

are lower triangular, while matrices U;; and U,y are upper triangular.

A A _ Ly O Un Ui (7.1)
Ao A Loy Lo 0 Uxp
This partitioning results in a series of smaller problems:
Ay = LunUn (7.2)
A = LUy (7.3)
A21 == L21U11 (74)
Ay = Ay — LUy (7.5)

Trony and Toledo proposed this partitioning of the LU factorization [17].

29

AIQQ = L22U22 (76)

First, one computes Lq; and U;; by factoring A;; according to Equation 7.2. These
results are used to solve Equations 7.3 and 7.4 for Uy, and Lo respectively. Then, Ay
is updated according to Equation 7.5, which produces A},. As with the triangular
solver, the matrix subtraction required by this step can be performed on the memory
tiles. Finally, A}, is used to compute Lgs and Usy. The recursive formulation due
to Equations 7.2-7.6 reduces the problem of an LU factorization into two smaller
LU factorizations, a matrix multiplication, a lower-triangular solver, and an upper-
triangular solver of the form XU = B. The stream-structured version of this upper-

triangular solver is similar to that of the lower-triangular solver.

7.2 Decoupling

The derivation of a decoupled design begins with a systolic LU factorization. As an

example, consider the LU factorization for N = 3.

11 Q12 Q13 1 00 U1 Uiz U3
Q21 Q22 Q23 = lpy 1 0 0 w9 ugs
31 a3z 433 l31 I3 1 0 0 wuss

Figure 7-1 shows the progress of the systolic LU factorization, while Figure 7-2
shows the pseudocode executed by each compute processor. Columns of matrix A
enter the compute array at the top, and fold over towards the bottom. The columns
of upper-triangular matrix U leave the array at the bottom and the rows of lower-
triangular matrix L exit on the right. The compute processor p;; in row 7 and column j
of the compute array computes either u;; if ¢ < j, or [;; otherwise. Since [; = 1, the
diagonal elements of L are neither computed nor stored explicitly.

The data flow pattern of the LU factorization is straightforward. Elements of L
stream from left to right, and elements of U stream from top to bottom. When a pair

of elements enters processor p;;, it computes an intermediate value of either /;; or u;.

60

s ay; as
A3 Az A Az, Ay ag,
a4z 8y Az 8 ag LRI P
an asx a, Az A A
]
) an| 8y

1) @) 3

ass
Az Az, Ay sz
a, Az Az Azz
Ugg Usp
ap 8y 13 ay Qp Qg g EE
Az | U Qg
21
an Qx| Ap A Az Ay
Az

(4) ©) (6)

Uz
13
Iy Ul ag lp; Ugg Iy
Uz Upg =
gy 33 Up| 8y Ups
| Uy l3; Ug, | Ug|lsy Usgs
31 r 32 S
Az Az Az sz I as sz
¢ U]_]_ ¢ u12
r=ag=lyup S=ag~ Inuy,

() ®) 9)

ls Uy lay I
33 | -
S ag Uss
¢ Uz ¢ Ujs ¢ Uys ¢ Uz
(20 (1) (12

Figure 7-1: Systolic LU factorization for N = 3. Figure 7-2 shows the pseudocode
executed by each compute processor performing a systolic LU factorization.

61

x < Net(north)

if i <j /] computing U
for n: 1..:—-1
x < x — Net(west) x Net(north) route Net(west) — Net(east),
Net(north) — Net(south)
Net(south) <+ =z

if i > 7 // computing L
forn: 1..5-1
x < x — Net(west) x Net(north) route Net(west) — Net(east),
Net(north) — Net(south)
Net(east) <« xz/Net(north)

Figure 7-2: Pseudo code for compute processor p;; executing systolic LU factorization.
Note that the storage of values 4, j, z, and n requires a bounded amount of storage
only.

As a concrete example, consider the computation of element w9y = a9 — loy « Uo,
where 419 = a9, u1; = a1, and lo; = ag1/u11. Processor poy at the center of the array
will produce value ug. At time step 6 of Figure 7-1, processor pg; receives ui; from
above and uses it to compute element ly;. This value is sent to the right and becomes
available on processor pys at time step 7. Simultaneously, processor pio sends 119 = a9
downwards towards processor pyy. At time step 7, processor poo receives elements uqo
from pi2 above and ly; from po; on the left. With element aqy already resident since
time step 5, processor pyy computes ugsy = oo — loy - U1p. Value ugy remains on
processor pgs during time step 7, while value w5 is sent towards neighbor p3s. Then,
during time step 8, u;, is sent to neighbor p3y. At time step 9 processor pss uses ugg
to compute Iy = (asg — l31 - U12) /uge. In time step 10, element ugy leaves the array at
the bottom of processor pss.

Analogous to the triangular solver, one reduces a problem of size N x N recur-
sively until the subproblems fit into an R x R array of compute processors. Figure 7-3
illustrates the data movement of the matrices when computing five systolic subprob-
lems according to Equations 7.2-7.6. The algorithm needs R memory processors to

buffer the columns of A, another R for the rows of L, and an additional R for the

62

columns of U. Thus, the decoupled systolic LU factorization requires P = R? com-
pute processors and M = 3R memory processors. One observes that M = o(P), and
the structure of the LU factorization is decoupling efficient.

Similar to the lower-triangular solver, the partitioning due to Equations 7.2-7.6
produces a set of heterogeneous subproblems. To obtain the most efficient compo-
sition of the subproblems, one may group, pipeline, and overlap independent sub-
problems. Unfolding the recursion all the way to subproblems of size R permits a
block-iterative schedule with efficient pipelining. Analogous to the standard three-
fold loop of the LU factorization, one can solve Equation 7.2 for each pivot block,
pipeline the solvers of Equations 7.3 and 7.4 for the pivot row and column, and up-
date the lower right matrix by pipelining the matrix multiplications of Equation 7.5.
The computation of Equation 7.6 corresponds to the factorization of the next pivot

block.

7.3 Efficiency Analysis

The number of multiply-and-add operations of an N x N LU factorization is C(N) =
N3/3. This approximation neglects an asymptotically insignificant linear term, if we
count divisions as multiply-and-add operations.

One may calculate the number of time steps required for our stream-structured
LU factorization when using a block-iterative schedule and pipelining independent
subproblems. The computation is partitioned until A, L, and U are ¢ X o block
matrices where each block is itself an R x R matrix. As an example of this schedule,

consider the case when o = 4 represented by Equation 7.7.

Ay A Az A Ly, 0 0 O Ui Ui Uiz Uns
Agr Ay Agy Agy _ Loy Lyy 0 0 0 Uz Uy Uy (7.7)
Asr Aszy Az Asg L3y Lsy Lz 0 0 0 Uss Us
An Ay Az Ap Ly Lip Lsyg L 0 0 0 Uu

Consider the computation of Loy and Uss. Following the partitioning, this calculation

63

] > Lll
R *
2R+
Ull
3R+
AR
!
1
.
4R+
SRY (A

2R+ C—
!
!

4)

2R+

3R+

| sz

@

2R+

3R+

4R+

©)

2R+

3R+

4R+

®)

Figure 7-3: Phases of stream-structured LU factorization on an R x R array of com-
pute processors, with N = 2R. Phase 1 factors A;; into Li; and U;j; according to

Equation 7.2. Phase 2 solves Equation 7.3 for Uss.

Phase 3 solves Equation 7.4

for Ly;. Phase 4 computes Af, according to Equation 7.5, performing the matrix
subtraction on the memory tiles. Finally, in phase 5 Al, is factored according to
Equation 7.6. The shapes of the matrices indicate that the rows and columns enter
the compute array in a staggered fashion.

64

is performed after the first column block of L and the first row block of U have
been computed and A has been updated by computing A;j = A;j — LyUy; where
2 < 4,7 < 4. Thus, one can compute the factorization A}, = LgsUs. Next one
determines the second column block of L by solving the lower-triangular systems
Aly = LiUsy and the second row block of U is determined by solving the upper-
triangular systems A’Qj = LoyUs; where 3 < 4,5 < 4. Finally, the remaining part of

the matrix is updated by computing Aj; = A}, — LipUs; where 3 <14,j < 4.

It is now possible to determine the number of time steps required to compute
diagonal blocks of L and U for an arbitrary value of 0. Computing diagonal blocks
L;; and Uj; requires a single LU factorization, which takes 4R time steps. Once these
values are computed, they can be used to calculate the o —7 blocks of row block 7 of U
and the o — 7 blocks of column block 7 of L as in Equations 7.3 and 7.4, respectively.
Computing these superdiagonal values of U requires a lower-triangular solver for each
block, and the computation of each block can be pipelined. There are R time steps
required to fill the pipeline, and R time steps to drain it while 0 — i problems will be
pipelined. Thus, a total of (¢ — i) R + 2R time steps are required for computing the
superdiagonal elements in row block 7 of U. Computing the sub diagonal elements
of L requires an upper-triangular solver for each block in the column, and again the
computation can be pipelined. In this case, it takes an additional R time steps to
start the pipeline because the matrices A and U are not adjacent (cf. Figure 7-3(c)).
Thus, a total of (¢ — i) R+ 3R time steps are required for computing the subdiagonal
blocks in column 7 of L. Having computed these values of L and U, one must update
the A matrix as in Equation 7.5. The (0 — i)R X (0 —)R submatrix in the lower
right corner of A is updated by performing matrix multiplications and subtractions
as in Equation 7.6. All matrix multiplications are independent, so one may pipeline
these problems. R cycles are required to fill the pipeline and an additional 2R are
needed to drain it. Due to the size of the submatrix being updated, the algorithm
performs a total of (o — 4)? matrix multiplications. Thus, the updates of matrix
A require (0 — 7)?R + 3R time steps. One may overlap the computation of each

phase of the partitioning to increase the efficiency. There are R cycles of overlap

65

between the lower-triangular solver and the LU factorization. There are 2R cycles
of overlap between the upper- and lower-triangular solvers. There are R cycles of
overlap between the matrix multiplication and the and the upper-triangular solver.
Finally, there are 2R cycles of overlap between the subsequent LU factorization and
the matrix multiplication.

The total number of time steps required by the stream-structured LU factoriza-
tion is computed by summing the number of cycles required to compute each (L;;, Uy;)
pair. Thus the total number of time steps is the sum of the number of time steps
spent, performing LU factorizations plus the sum of the number of time steps dedi-
cated to lower-triangular solvers plus the total number of time steps spent computing
upper-triangular solvers, plus the total number of time steps spent performing matrix

multiplications minus the time steps where computations can be overlapped:

Tw(o,R) =~ Z4R

k=1
o—1 o—1 o—1
+> (0 —kR+2R)+ 3 ((c —k)R+3R)+ Y ((c — k)’R +3R)
k=1 k=1 k=1
o—1
~ Y 6R
k=1
13 1,)
= - - o —2
R(3a +20 + 60

One observes that for a fixed o, the total number of time steps is T(N) = ©(NN) when
using (N/o)? compute processors.

Using a network of size R, P = R? compute processors, and M = 3R memory pro-
cessors, the floating-point efficiency of the LU factorization according to Equation 4.1
is

o’ . R
o +302+30-6 R+3

Elu(O', R) =~

Analogous to the treatment of E,,,, and Ey, in Equations 5.3 and 6.9, one may
split Ejy, into two terms, one of which depends on ¢ = N/R, and one depending on the

network size R. For 0 = 1, the problem reduces to a single systolic LU factorization,

66

and one obtains a compute efficiency of

1 R
Eu(o=1,R) = 2 Ri3

Asymptotically, that is for large R and o, the compute efficiency of the LU factoriza-
tion on the DSA approaches the optimal value of 100 %. As for the triangular-solver,
when o > 1, E,,(R) =~ R/(R + 3), and one achieves more than 90 % efficiency for
R > 27.

67

68

Chapter 8

QR Factorization

QR factorization decomposes an M x N matrix A with M > N into two matrices)
and R, such that () is an orthogonal M x M matrix, R is an upper triangular M x N
matrix, and A = QQR. This treatment assumes that the factorization is based on
fast Givens rotations [11]. The application of a fast Givens rotation, expressed as a
matrix multiplication, annihilates an element of A. The M x M matrix G(3,j) is a
fast Givens transformation, if it places value zero in element (i, j) of the product

G(i,7)" - A. One may restrict G(7,7) = (gs;) to the form

j 1
1
1, 1=
j 1 o
o , o, 1=jA]=1
G(’l,]) = .. . ggj:< .] . (81)
B, t=iN]j=]
i I} 1
{ 0, otherwise.
1

All diagonal elements of G(%, j) have value 1 and all off-diagonal elements have value 0,
with the exception of elements g;; and g;;, which have non-zero values g;; = a and

gij = B. Given matrix A = (a;;) and an auxiliary diagonal M x M matrix D = (d;),

69

a and § are determined as o = —a;;/aj;, 8 = —ad;j/d;, v = —af, d; = (1 + 7v)d,,
and d; = (1 + y)d;. Matrix D allows one to compute o and 3 without square root

operations. One should initialize D such that d; =1 for 1 <7 < M.

One may apply a series of fast Givens transformations to A to create an upper
triangular matrix. Since transformation G(¢, j) annihilates element a;;, one applies
MN — N?/2 — N/2 fast Givens transformations with 1 < 7 < N and j <1 < M to
triangularize matrix A. Once a particular sequence of fast Givens transformations is
chosen, the computation of D and () must observe this order. This treatment assumes
a sequence of fast Givens transformations that generates an upper triangular matrix U
by annihilating the elements below the diagonal column-wise from left to right, and
within each column from top to bottom. More succinctly, one applies the sequence of
fast Givens transformations G(2,1), G(3,1), ..., G(M, 1) to annihilate all elements
below the diagonal in the first column, then proceeds by transforming the second

column with G(3,2), G(4,2), ..., G(M,2), and so on up to column N:
GM,N)'---GIN+1,N)T--.G(M,2)"---G(3,2)"G(M,)T ---G(2,1)TA = U.
Since (AB)" = BT AT | this product can be written in compact form as’

N M
G"A=U, where G=][[I GG i)
j=1i=j+1
Finally, one should consider the role of diagonal matrix D briefly. By construction

of the fast Givens transformation, it is the case that GTG = D. Since D is diagonal,

one may split D such that D = D'2D'2. Then one obtains D~'/2GTGD~'/? =

'In expressing products of Givens transformations, the order of operations effects efficiency.
The convention used here is that the product notation defines a sequence of multiplications that
corresponds to the sequence of indices in the product such that multiplications with larger indices
are applied from the right, that is, one interprets products as right-associative and the matrix
multiplication as left-associative to determine the sequence uniquely. For example,

2 3 2 3
H H (i) =]1 (II G(i,j)) = (G(2,1)- G(3,1)) - G(3,2).

i=j+1

70

(GD~Y)T(GD~Y?) = I, and GD~'/? is orthogonal. Thus, one may rewrite GTA = U
as (D~Y2G™)A = D~'/2U with the consequence that @ = GD~'/? is orthogonal and
R = D~'/2U is upper triangular.

8.1 Partitioning

One may partition the QR factorization according to Equation 8.2 for M > NZ2.
Without loss of generality, the discussion is restricted to the case where M = 3/2N,
such that matrices A;; and R;; in Equation 8.2 are N/2 x N/2 matrices.

Ay A Ry Ry
Ag1 Az = Q| 0 Ry (8.2)
Az Az 0 0

This partitioning allows one to formulate the QR factorization as a series of three

subproblems, defined by Equations 8.3-8.5.

A Ry
Ao = @1 0 (8.3)
A31 0
Ry Aio
Algy = QlT Agy (8-4)
Alsy Asy
Al N R

292 — 0O, 292 (g 5)
AI32 0

Equations 8.3-8.5 enable one to compute the QR factorization by solving three
smaller problems. First, one triangularizes columns 1,..., N/2 of A according to
Equation 8.3. As a result, one obtains R;; and a sequence of fast Givens trans-

formations associated with matrix @);. Next, one updates columns N/2 +1,..., N

2Elmroth and Gustavson proposed this partitioning of the QR factorization [9].

71

of A according to Equation 8.4, which yields R, and the intermediate matrices A%,
and A},. This computation uses the sequence of fast Givens transformations calcu-
lated in the previous step, without computing); explicitly. Then, one triangularizes
columns N/2+1,..., N according to Equation 8.5, resulting in Ry and the sequence
of fast Givens transformations associated with Qg. Matrix Qz is an N x N submatrix
of ()o. Matrices @, ()1, and)y are defined in terms of fast Givens transformations

by Equations 8.6-8.8:

j=1l1i=j+1
I 00
N M 5
Q2= 0o . = (I 1II G(m)) D2 (8.7)
0 Q- G=NJ241 i=j+1

Q=01Q, = (H 11 G(@j)) D '2D1/2, (8.8)

j=li=j+1

A

where D = (d;) and D = (d;) are diagonal M x M matrices. Furthermore, d; = d;
for 0 < i < N/2 and d; = 1 otherwise, and d; = d; for N/2+1<i<Mandd; =1

otherwise.

One need not compute the intermediate forms); and @)y of matrix) in order
to triangularize matrix A. Instead, the sparse structure of the fast Givens trans-
formation may be utilized to operate with a highly efficient representation. Recall
from the definition of G(i,7) in Equation 8.1 that G(7,j) contains only two charac-
teristic values o and . Thus, it suffices to represent G(i,7) by means of the pair
(cij, Bij). In addition to being a space efficient representation, it is also advantageous
for implementing the only two operations associated with fast Givens rotations, pre-
multiplication and postmultiplication. the premultiplication of a matrix A with
fast Givens transformation G(4, j) occurs when forming the product G(3, 5)T - A, while
the postmultiplication of matrix A occurs when forming the product A - G(i,j).
Due to the structure of G(i,j), premultiplication effects rows i and j of A only, and

postmultiplication changes the values in columns ¢ and j of A only, cf. Figure 8-1.

72

i i

N .
7 DO

G(i,j) " A: AG(j):

AN\
I

Figure 8-1: The product of premultiplication G(i,7)" - A differs from A in rows i and j
only, while the product of postmultiplication A - G(3,j) differs from A in columns i
and j only.

Premultiplication of an M x M matrix A = (a;;) produces elements aj, = a;; +
Bij - i in row j and aj, = a; + oj - aj in row ¢ for 1 < k < M. All other elements
of A remain unchanged by premultiplication. Analogously, postmultiplication results
in elements aﬁcj = ayj+ i ak; in column j and elements aj; = ay;+;;- ag; in column ¢
for 1 < k < M. All other elements of A are retained by postmultiplication. One may
note that both premultiplications and postmultiplications offer various degrees of
parallelism. Specifically, one can exploit the fact that the premultiplications G(i, j)7 -
A and G(k,1)T - A and postmultiplications A - G(i,5) and A - G(k, 1) are independent
for mutually distinct values of 7, 7, k and [.

In summary, the partitioning of Equation 8.2 permits one to express the com-
putation of matrix R of the QR factorization as two smaller QR factorizations of
Equations 8.3 and 8.5 and a sequence of premultiplications with the fast Givens
transformations associated with QT according to Equation 8.4. If matrix @ is not
desired, as may be the case when using the factorization as part of a linear system
solver, (); and ()2 do not have to be computed explicitly. If the () matrix is desired
it can be computed by means of postmultiplications using a partitioning along rows
instead of columns. However, in general it will be more efficient to compute with the

fast Givens transformations than with an assembled () matrix.

8.2 Decoupling

The decoupled design for the QR factorization is based on three systolic algorithms,

each using an R x R array of compute processors. The first algorithm performs a sys-

73

tolic Givens computation by triangularizing an M X R matrix, where M > R;
cf. Equation 8.3 and, analogously, Equation 8.5. The systolic Givens computation
produces a sequence of fast Givens transformations G(, j), each of which is repre-
sented by the pair («;j, 5;;), and the corresponding values of diagonal matrix D. The
second algorithm implements the update operation of Equation 8.4 as a systolic
premultiplication of an M x R matrix. The third algorithm computes matrix) by
means of systolic postmultiplications according to Equations 8.6-8.8 on R x M
matrices. Typically, the () matrix need not be explicitly computed, as many oper-
ations with this matrix can be computed more economically by working only with
the fast Givens transformations. However, the computation of the () matrix is still

interesting as an example of systolic postmultiplications.

Figures 8-2 and 8-3 illustrate the systolic Givens computation for triangularizing
an M x R matrix A, where M > R3. Figure 8-4 shows the pseudocode executed
by the compute processors performing a systolic Givens computation. Columns of
matrix A enter the array at the top. In addition, the elements of diagonal matrix D
enter the array by interleaving them with the leftmost column of matrix A. The
resulting upper-triangular matrix R leaves the array at the bottom. Furthermore,
the Givens computation yields a sequence of pairs (c;, 8;;) and a sequence of values
0 = d; 172 that leave the array on the right. In addition, intermediate values* of &;
leave the array at the bottom of processor pg;; for example df)’) in time step 25. The
diagonal processors p;; of the array compute the sequence of pairs (o, f;;) for the
entire column j, that is for all rows ¢ with 7 < i < M. In addition, these processors
compute value 7;; = —;;8;;, which is used to update elements dg"H) =1+ ’yij)dgn)
and d§"+1) =(1+ %,j)d;n) of diagonal matrix D. After all updates are applied, one
computes 6; = 1/ W . The updates of the diagonal elements are scheduled on either

the diagonal or subdiagonal processors of the array.

3The systolic array for Givens computation is based on the array proposed by Gentleman and
Kung [10]. Bojanczk, Brent, and Kung describe an alternative array for QR factorization [6]

4The sequence of n updates of diagonal element d; is dentoed as: d;, dEl), dg2), dg3), . dg"),
and, finally, compute 6; =1/ dg"). Similarly, upper triangular element r;; (i < j) evolves from a;;
via a sequence of n intermediate values: a;;, ug-), ug), e uE;), Tij = 6iu§;).

74

a
d, 42 Ay
Ay) d, 2a - Ay
. A ' dy s . A3
.) Ay) d, azn)
. . Ay, . . ay .
ds Az ' . . Ay, . .
Ay ' ds Az ' . . a3 .
. ag, ' d, as, . . . agy
' ' ag ' ds az '
. . A . . as, .
d, ay a; . . A, . .
Ay a;, . d, ay a . . a,5 .
d, . A app . d, Az Az . . Az
a; d, . Az Az . d, Az a3
ay
GZI
ay ay dy a; dyjag,
D @ (©) ©)
Az
dy Az ' A
ay . d, Ay . Ay,
. Ay . d, s . 43
. . Ay ' ds As)
. . ag . ' Ay '
d3 a32 . . . a33 . .
as . d, as, . . . ag .
. ag . d; ag, i ' . Ay,
. . a d, as, .
Ay . . ag .
ay U208 oy Ay O | 8y Bor|ay Oy ay Ba a3 By 0y, Y1 B,y
1)
Ba Oz| ug Va Bal uf | ug Uy Va ug | ne
1, 1, 1 1)
a; d;jap g a, d;jap g ay d; |ufy [EE) uf d, uf u@d
You You
dg
d, ufy d, ugy ufd d, uf ufd
(5 (6) (7 (C)
Qs
d a .
4 22 d Ay
g ' 4 g . a3
. ay . d, ay, . Ay,
. . Ay . d4 Ay .
. . ag, . . Ay)
dj ag,) . A,
as; A d, | Q2 Y& Az Oy (8 Palag Oy An By azp PBay
[0}
Oy By 0y | uff Yo By | uf ufd uf} ya ud |
1 1) | @ 1 & 1) |y @ 1) & 1) |, 1 0 1) | @ i
ufp dfjuf ufy ufp dfjuf ufy ufp dfjuf ufy ufp dfju ufy
ugy Yau |u§) ufd
dg O3
uf) dfjufy uf) dfjufy dy uf) df jufy ds uf) dfjufy
9) (10) (11) (12)

Figure 8-2: Systolic Givens computation for an M x R matrix, where M > R. The
figure illustrates the triangularization of a 4 x 3 matrix A, such that R = D~ '/2
G(4,3)T G(4,2)" G(3,2)T G(4,1)T G(3,1)T G(2,1)T - A. The fast Givens trans-
formation G(i,j) is represented by the pair (oj, fij), and §; = d;l/z. Figure 8-4
shows the pseudocode executed by each ppocessor in the systolic array. [continued in
Figure 8-3]

d, as 43
Ay . d, Ay . Az
Ya B ay Ay d4 ay Oy Ay Oy |8y B41 Auz Oy
4@ | R u ue u
1 Olyy Ba ay 42 Yo Ba 12 43
u@ df|u® ufd uf dPuf ufy uf dfu ufd ufp dPuf ufy
ufg dPufd og ufl agp|u B ufd B ufd Ve
a
By Gz| Uuf Voo Bwm| UR 2 uf Ve ~B>32 dg
uf) df juf uf) dijuf) uf) dPuf d, uf di|ug)
Ys2
dy
o g o g ug ap
(13 (14) (25) (16)
ay Bu A3 Bu| g Ya 5,
b v ug " | ap e |, o L2
ufy dPuf uf3 ufy dP|uf uf) ufy d®u uf uf) ut? uf}
Ya (U u®@ u@ dPul oy u® o, ul B a u® Baz
42
d(Al) o [342 (SPP) u£123) Ya2 |342 u(zga) = u(zgz) Ya2
ds uf dfjuf uf df|uf uf dfufy uf df
u@ Vi |UF dP
d@ O3
ug d9 ug d9 dg) ug d@ dg ugd
1 (18) (19)
(20)
5, 8 5,
"z M3 T
Wl g
Y42 L7} o, 9, iz 9,
ry dg 5, I2 I2 l2s
u$) dfjuf) uf) dP|uf) uf) usd uf)
uly d¥P uf a, Vou [UB Bus Yas
Oy Bas 3 3 3
Biz Ol ra Vs Baz > d® U vy I d§
d@ ug d@ d@ ug d@ d@ ug df d§ ug
¢ LIEEY
(21 (22) (23) (24)
3,
Fas [
ri d§ 2 05 N
I 5, Fas [
ug ug)
¢d5;3) ¢r12 ¢I‘22 ¢r13 ¢r23 ¢r33
(25) (26) 27) (28)

Figure 8-3: Continuation of Figure 8-2.

76

ifi=landj=1

x <Net(north)

d <Net(north)

form: 1.. M —1
a < —Net(north)/z route Net(north) — a
B —a x —d/Net(north) route Net(north) —Net(south),

a —Net(east)

v + —a x (3 route § —Net(east)
x < x + (3 X a route v —Net(south)
d<—d+dxvy

6 1/V/d

x < = X 0 route 6 —Net(east)

forn:1..7-1
nop route Net(north) — Net(south)

Net(south) <+ =x

elseifi=Rand j=R

x <Net(north)

d < Net(north)

form: 1.. M —1
a < —Net(north)/z route Net(north) — a
B —a x —d/Net(west) route Net(west) —Net(west),

a —Net(east)

v < —a X (3 route § —Net(east)
x < x + (3 X a route v —Net(west)
d<d+dxvy

6 1/Vd

x < = X 0 route 6 —Net(east)

forn:1..71—1
nop route Net(north) — Net(south)

Net(south) <+ =z

Figure 8-4: Pseudo code for compute processor p;; executing systolic Givens com-
putation. Here the code is shown for the phase that ouputs intermediate values of
d to the bottom of the array. One should note that each processor requires only a
bounded amount of storage to hold the values z, d, a, m, «, 3, 7, 6, n, %, j, R, and
M. [continued in Figure 8-5]

7

else if 1 =3
x <Net(north)
d < Net(west)
form: 1.. M —1
a < —Net(north)/z route Net(north) — a
B —a x —d/Net(west) route Net(west) —Net(south),
a —Net(east)
v + —a X (3 route § —Net(east)
x < x + [X a route v —Net(south)
d<d+dxvy
6« 1/V/d
x < = X 0 route 6 —Net(east)
forn:1..7-1
nop route Net(north) — Net(south)
Net(south) <+ =z

else if 7 > 1
x <Net(north)
form: 1.. M —1
Net(south) < xxNet(west)+Net(north) route Net(west) —Net(east),
Net(north) — a
x < axNet(west) + x route Net(west) —Net(east)
forn:1..7-1
nop route Net(north) — Net(south)
Net(south) <« x/Net(west) route Net(west) —Net(east)

elseifi=Rand j=R—-1

d «<Net(north)

Net(east) < d + dxNet(north)
form: 2.. M —1

d «Net(north)

Net(east) «— d + dxNet(north)

nop route Net(east) —Net(west)
forn:1..1—-1

nop route Net(north) — Net(south)

Figure 8-5: Continuation of Figure 8-4. [continued in Figure 8-6]

78

elseif 1 =j5+1
form: 1.. M —1
d «<Net(north)
Net(east) < d + dxNet(north)
forn:1..71-—-1
nop route Net(north) — Net(south)

elseifiZRand i > j
forn: 1..:-—1
nop route Net(north) — Net(south)

elseifi=Rand j=1
forn:1.. N-R
nop route Net(east) — Net(south)
forn:1..:1—-1
nop route Net(north) — Net(south)

elseif i =R
forn:1.. N-R
nop route Net(east) — Net(west)
forn:1..7—1
nop route Net(north) — Net(south)

Figure 8-6: Continuation of Figure 8-5.

79

The systolic Givens computation involves a relatively large number of operations
even for the small 4 x 3 example in Figures 8-2 and 8-3. Therefore, rather then
discussing the computation of a particular element, the data flow through the array
is described at a higher level. As mentioned before, the processors on the diagonal
of the array are responsible for computing the fast Givens transformations. In par-
ticular, processor p;; computes the transformations G(2,1) during time steps 4-8,
G(3,1) during time steps 9-13, and G(4,1) during time steps 14-18. For example,
transformation G(2, 1) involves computing am; in time step 4, 31 in time step 5, yo1 in
time step 6, and updating the diagonal elements d; and dy during time step 8 on the
diagonal and subdiagonal processors p;; and po;. Analogously, the fast Givens trans-
formations G(3,2), and G(4,2) are computed on processor ps; with support of psy

during time steps 12-21, and G(4, 3) on processor ps3 during time steps 20-25.

The systolic Givens computation in Figures 8-2 and 8-3 produces an upper trian-
gular 3 x 3 matrix by computing the premultiplications with the fast Givens trans-
formations. All updates due to premultiplications occur on the upper triangular
processors of the array. They generate the elements r;; (¢ < j) via a sequence of
intermediate values: a;;, uz(-;-), uz(-?-), cen ugl), Tij = 51’“1(-?)- Recall that the updates of
diagonal element §; involve multiplications with (1 + +;;) for > j and with (1 + v;;)
for + < j. The systolic Givens computation according to Equation 8.3 will there-
fore generate intermediate values of ¢;, that require further updates when computing
Equation 8.5. In Figure 8-3, only one intermediate value, dff’), is produced, which

leaves the array at the bottom of p3; at time step 25. It will enter the array again,

as explained during the discussion of Figure 8-12 below.

Figures 8-7 and 8-8 illustrate the systolic premultiplication, which updates ma-
trix A according to Equation 8.4. Figure 8-5 shows the pseudocode executed by
each processor performing the systolic premultiplication. This update uses the pair-
representation of the Givens transformations, so that matrix QT does not have to
be computed explicitly. The systolic array produces the R x R matrix R, and the
(M — R) x R matrix (A}, A},)T of Equation 8.4. Columns of matrix A enter the

array at the top, and the pairs («;;, 3;;) of fast Givens transformation G(4, j) as well

80

as the diagonal elements of matrix D~1/2

enter the array from the right. Processor p;;
computes element r;; of matrix Ri5. The elements of matrices Ry and (A, A%,)"
leave the array at the bottom such that the values of (A%, A},)T precede those of Ry,.

Compared to the systolic Givens computation, the data flow through the array in
Figures 8-7 and 8-8 is relatively straightforward. The figures illustrate the systolic

premultiplication of a 4x3 matrix A. According to Equation 8.4, the premultiplication

for this particular example is:

A12

R A
P = DT2G(4,3)7G(4,2)7G(3,2)"G(4,1)TG(3,1)TG(2,1)" ,
AI22 A22
where the multiplications are executed from right to left. For example, consider
the computation of element r;. Its value is determined by the premultiplications
with G(2,1), G(3,1), and G(4,1), generating a sequence of intermediate values a1,

Ugll), U§21)a Uﬁ)a and finally 7;: Ugll) = a1 + Pa - ag1, Uﬁ) = Ugll) + Ba1 - aan, Uﬁ) =

uﬁ) 4+ Ba1 - Qq1, T11 = 07 - uﬁ) In Figures 8-7 and 8-8, each of these updates is
computed by processor p;;. The values of the first column of A enter p;; from the
top. The («, §)-pairs associated with the fast Givens transformations G(2,1), G(3,1),
and G(4,1) enter p;; from the right. Values ay; and [5; are available for the first
update at p;; during time step 6, resulting in uﬁ) The second update occurs at time
step 8, and the third at time step 10. At time step 11, diagonal element §; arrives at
processor pii, resulting in the computation of r1;. Thereafter, ry; travels downwards
through the array, one processor per time step, until it leaves the array at the bottom
of processor ps3; at time step 14.

The computations of elements a;; for i > R are analogous to those of the ry;.
For example, the computation of a}j; produces the sequence of intermediate values:
41, aflll) = @41 + o101, aﬁ) = aill) + a42u§11), ay, = affl) + a43u:(,,21). The corresponding
updates occur at time step 9 on processor p;1, time step 10 on processor po;, and time
step 11 on processor ps;. Element a); leaves the array at the bottom of processor p3;

at time step 12.

Figures 8-10 and 8-11 illustrate the systolic postmultiplication, which computes

81

s an
as . 43 : sz
as . Az Ay
asx . Az . as
ay az . s CEY]
ap Az an azn
a3 a, A
Oy Bo1 Ozy Bag 0y By 84 Oy Bo1 Og1 Bag 04y Bay 84
13
Oz B 042 B2 02 s OB BeY,
+ O43Ba3ds L« P2 ¢ FEX 2
1) e
Ay
. s ayn
ag . Ays : s
as . as Ay
az Ag3 . as
an Az . an Ags
A Oy A 0Oy | 82 By 5 B.d
[of a
u@ By U1 Bay Oy Bas 8 u uil 3131 M4l Pa1 F1
aip 13 an i 13
- O3B 042 Bz B2
. O3B0y Bar
u@ N P PN
b
. O45B4303
©) 4
an
. g ayn
CET . Ay . Az
Az . az A3
Ay 0O |82 Py |azk O Az PBo| 3 Oy |adz; Ba
u | u® | ug [Pa®aBads u | @ | u@ (Cabad
an aip u@d an u@ ufy
ugd oy
Ogy B32 04 B420, ug B3 042 B0,
uf ufy ug uf ufy
. O45B4303 .. Oy3Pysds

®) (6)

Figure 8-7: Systolic premultiplication for computing R and updating A according to
Equation 8.4. Figure 8-9 shows the pseudocode executed by each processor in the
array. [continued in Figure 8-8]

82

an
. s as
Ay Oz |8z Bay|au Oy Ay Ba| Qs Ogy|as Ba Ay Oy |z, PBa Sy
1 2 1 2 1 3 1, 3]
W | ug | e [B.o wg | ey | u@ o | u@ | ra
il 2 1 2 2 2 3
ufy ufy ufy ufy u® uf3 ufy uf uf)
1 1 1 1 1 1 1 1
ufl ag, Ul B uf) oy, |Uf Byl oy uf) B (@ o laly Bu
2 2 2 2 2 2 2 3
uf3 ufd |a, B S uf ufl ad |Bi0: ufp af) uf) |3,
uw ug usd uw ugy u uw ug ug
2
af ay
. O45B4303 045 B4 3 ay |Bisds
2 2 2, 2 2
w9 |ug o Jug ug

)) 9

an Ba [5,
uf TS LTt
) uy
af) 0,(a8 Bup|ri 3, af) By|rn 9, Fa 0,
al uf) I3 uf) I2 I3 P71 M2
W | W |ug)
a aizpEd B af) a,;|al Bus|ris O a) Bu|riz B3|l
ay ug |3, ay ug I33 uf? I3 I3
u® ngz) u@ u® u(322) ud® u® U(33z)
! al, ! ay, ! ay, .
(10) (11) (12
)
Fn 85(ry Mo
I3 M3 M3 a1 I3 a1
u®
¢r12 ¢r23 ¢I’11 ¢I’22 ¢r33 ¢r21 ¢r32
(13) (19 (15)
¢ LETE
(16)

Figure 8-8: Continuation of Figure 8-7.

83

x < Net(north)

if j#£1

form: 1.. M —1

Net(south) <— xxNet(east)+Net(north), route Net(east) —Net(west),
Net(north) — a

x < axNet(east) + x, route Net(east) —Net(west)

forn:1..7-1
nop, route Net(north) — Net(south)

Net(south) < x/Net(east), route Net(east) —Net(west)

else
form: 1.. M —1
Net(south) <— xxNet(east)+Net(north), route Net(north) — a
x < axNet(east) + x
forn:1..7-1
nop, route Net(north) — Net(south)
Net(south) < x/Net(east)

Figure 8-9: Pseudocode for compute processor p;; executing systolic premultiplication.
Note that each processor requires only a bounded amound of storage to hold the values
of m, 1, 5, a, x, and M.

84

matrix @ of the QR factorization according to Equation 8.8 by postmultiplying the
sequence of fast Givens transformations into the identity matrix. The pseudocode in
Figure 8-9 can also be used to compute a systolic postmultiplication. In this case, each
column of processors would compute one row of output values. Here, intermediate

values of G are denoted as @' according to

R M
(@ @ @a) = (r00) (H 11 G(i,j)> D

j=1i=j+1
where (1; is an R x R submatrix of (), ()}, and Q5 are R x R matrices of intermediate
values, and [is an R X R identity matrix. The R x R array of compute processors
in Figures 8-10 and 8-11 generates an R X M block of rows at a time, where M > R.
Matrix G = (gi;), which is initially the M x M identity matrix, enters the processor
array at the top. The fast Givens transformations are represented by their (a, 3)-

/2 enter

pairs, and enter the array from the right. The diagonal elements of matrix D~
the array from the right following the fast Givens transformations. Matrices @11, @
and ()}5 leave the array at the bottom, such that processor pg; emits row i of matrix

(Qu1 Q)5 Q'3), and the values of @}, and Q' precede those of Q1;.

Processor p;; of the array computes element g;; of (1;. For example, consider
the computation of element g1, which results from postmultiplications with G(2, 1),
G(3,1), and G(4,1). Starting with g;1, processor p;; generates the sequence of inter-

(1) _ (3) _
1

mediate values: g;7" = g11+ (21912, gﬁ) = 98) + (51913, 91 gg) + (41914, and finally

q1 = 5193). The first update occurs on processor p;; at time step 6, the second at

time step 8, the third at time step 10, and the computation of ¢;; at time step 11.

The intermediate values gzgf) for j > R are computed before the elements of Q1.
In Figure 8-11, these are the values gﬁ), ggi), and g;.(,,i). One should note that the
number of updates involving zero-elements of the initial matrix G = [is asymptot-
ically insignificant compared to the total number of updates. Hence, one may leave
the updates involving zero-elements in the computation to keep the systolic array as

simple as possible.

One is now ready to compose the three systolic algorithms for fast Givens com-

85

924 914
913 . 934 . G924
. U23 . 913 . Ga4
J12 . [¢E! . J23 .
9u 02 . d12 . [eEX
. O 93 9u 92 .
. a1 . 921 932
« Oy B2 O3y Bag 041 Bar 81 QO a1 Oag Pay Oag Bar 1
931
O3y B 042 B42 02 - e« O Bp0,pBad;
+ O43PBus 03 e Py P
(1) 2
CEV
. 924 G4
913 . [eEN . 924
. 923 . J13 . [N
912 . [eEX . 923 .
911 922 . 912 . J33
O3 Oy 02 Oz |9z Bx
agQ By O3 By 0gy Bar Oy g gy Olgy Ba 04 Bar 81
921 931 91 921 9a1
- O3By 04, Bs 0, . O3B 04 B4 0
9%
. O43B430; e o Og3PBusds
©) (4)
G4
. 924 EV
J13 . Ja4 . 924
923 . 913 934
012 Oz (0 P20 Oxn O Bai|0s Oa1|Qs3 Ba 5
9 | o | o8 [BadaBud: o | o8 | o8 |TPu®
9u 9z oy 911 (o154 af?
1
9% o5 Va2 0a2B4202
O, Baz 042 Ba2 82 09
9% 9% 983 9% 9%
« O43B430; N P PR

©) (6)

Figure 8-10: Systolic postmultiplication for computing an R x M block of Q =
IG(2,1)G(3,1)G(4,1)G(3,2)G(4,2)G(4,3) D=2, [continued in Figure 8-11]

86

U24
013 Os1(0Ups Pz (0as O
off | of | o |Pad:
off of 9%
g% 0y (9% Bsx
08 | g§ |Gl
9% 9% 9%
. O43Pus 0
9%
(M
gl4 B41 61
@ U2
9 98}
g ay 9%l Baz|dar O
9ff 9% Oz
o3 99 9%
9 Gas|99 Pas
o | o8 |%
9} 9% 9
198
(10)
Q12
Qi O3 Uy
Q13 O2s Qa3
o}
¢Q12 ¢q32
(13
¢Q13
(16)

J14
013 Bar|924 Qu1|9as Bas
o | off | o9 |%
9ff 9% 9
0¥ a3 |9% B |9 0
o | of | off |Pe®
9% 9% 9%
04384353
9% 9%
©)
3
qll
9f
99 Bs|dxn 9
99 A2 Gz
9} 9%
g9 0s3|g¥ PBa|diz O3
of? 9%} U3
9 o} 9
108
(11)
A1z
EE} U2s
¢q11 ¢Q22 ¢q33
(14)

01 O41 (924 Ba 5y
9% 9% 01
9fd 9% 9§
09 Ba |05 04|05 Ba
9% 9% 9%
9% 9% 9%
99 Oas
9§}
9% 98 9%
9
du1 9,
q12 q22
9%
99 Bi|dn O3|ds
9% Q23 Oa3
983 9%
o8 1 G
(12)
Gi3
¢Q12 ¢q23
(15)

Figure 8-11: Continuation of Figure 8-10.

87

B4353

putation, premultiplication, and postmultiplication, and discuss the decoupled data
flow of the complete QR factorization. Figure 8-12 shows the twelve systolic com-
putations needed to compute both @ and R of an M x N matrix A for M = 3R
and N = 2R on an R x R array of compute processors. In addition, 3R memory
processors are required on the periphery of the compute array. The computation
uses two fast Givens computations to compute Ri;, R, and the corresponding fast
Givens transformations in phase 1 according to Equation 8.3 and phase 3 according
to Equation 8.5, respectively. Phase 2 implements the premultiplication according to
Equation 8.4. The remaining phases use the postmultiplication to compute matrix Q).
In particular, matrix); of Equation 8.6 is computed during phases 4-6, one R x M

row block per phase, and matrix () is computed during phases 7-12.

The fast Givens computation of phase 3 is reflected about the horizontal axis,
when compared to the presentation in Figures 8-2 and 8-3. This reflected version
of the systolic algorithm allows one to stream the results of the premultiplication
from phase 2 immediately back into the array. Similarly, the computation assumes
reflected versions of the postmultiplication during phases 7-9. One may note that
the computation of R is finished after phase 3. Thus, for linear system solvers that
do not require knowledge of (), one could stop the computation after these three
phases. Phases 7—12 for the computation of () deserve further discussion, because this
implementation deviates slightly from Equations 8.6-8.8. Rather than computing -
explicitly, it is more efficient to postmultiply); with the corresponding fast Givens
transformations directly. However, these postmultiplications apply to the right-most
M x (M — R) submatrix of @; only, as shown in phases 7-9. Finally, the right-
most column block (Qf5 Q5 Q43)T of the intermediate matrix must be multiplied by
D~1/2 according to Equation 8.7. This multiplication is implemented in phases 10-12.
Matrix @) is now available in parts on the memory processors at the top and in parts

at the bottom of the machine.

Analogous to other stream algorithms, the partitioning due to Equations 8.3-8.7
produces a set of heterogeneous subproblems. One should reduce the QR factorization

of size M x N until the subproblems can be computed on an R X R array of compute

38

Az Az
Ao A,
A A,
) A R .
4 D G(M,N/2)..G(2,1) G(2,1)..G(MN/2) D z G(2,1)..G(M,N/2) D
JE j; if%
R D G(MN)...G(N/2+1,N/2) ou
R 11 '
A 22 A 22 Q 1
A 32 A132 Q 13
D @) ©) 4
Qe Q2
G(2.1)..G(MN/2) D G(2,1)..GMN/2) D Qis o,
Qa Qa1 i G(N/2+LN/2)...G(M.N) D i G(N/2+1,N/2)...G(M,N) D
Q2 Qa2 Q1 Q'
Oz Qs Qy Q23
®) (6) @ ®)
Q 32
Q33

G(N/2+1,N/2)...G(M,N) D

A’F

Q3

Q33

© (10) (11) (12)

Figure 8-12: Phases of a stream-structured QR factorization on an R x R array of
compute processors, with M = 3R and N = 2R. In phase 1, one triangularizes the
left-most N/2 columns of A, producing R;; and a set of fast Givens transformations as
expressed in Equation 8.3. In phase 2, the Givens transformations are applied to the
right-most N/2 columns of A yielding R;5, A}y, and A%, according to Equation 8.4.
In phase 3, one triangularizes the right-most columns of A according to Equation 8.5.
Phases 4-6 compute)1 according to Equation 8.6, while phases 7-12 compute) =
(1Q- according to Equation 8.8. Note that phases 3 and 7-12 can be modified without
loss of efficiency, so that matrix () is not distributed across the top and bottom rows
of memory processors, but would be available on one side only.

89

processors. Figure 8-12 represents the data movement when computing the systolic
subproblems of Equations 8.3—8.8. This structure requires R memory processors at
the top of the array to buffer the columns of A and the intermediate results, an-
other R at the bottom of the array for the rows of () and columns of R, and R more
to the right of the array for storing Givens transformations. Thus, the decoupled
systolic QR factorization requires P = R? compute processors and M = 3R mem-
ory processors. Therefore, M = o(P) and thus the QR factorization is decoupling

efficient.

8.3 Efficiency Analysis

In the following, the efficiencies of computing R and @} of an M x N matrix A
are analyzed separately, because the computation of @ is optional. To handle the
general case where M > N, two o-values oy = M/R and oy = N/R are introduced,
where network size is again represented by R. One may approximate the number
of multiply-and-add operations for computing matrix R by means of fast Givens
transformations as Cr(M, N) ~ N%(M — N/3). This approximation neglects an
asymptotically insignificant quadratic term that includes division operations and a
linear term including square-root operations.

The analysis begins by calculating the number of time steps required by the com-
putation of matrix R. One should apply the methodology used for the lower-triangular
solver and the LU factorization, and partition the problem recursively until matrix A
consists of o), X o blocks, each of size Rx R. Equation 8.9 illustrates the partitioning

when o, = 5 and oy = 4.

Ay A Az Ay Ry Ry Rizs Ru

Ag1 Agp Agz Ay 0 Ry Rps Ro

As1 Azy Aszz Az = Q| 0 0 Rz Ry (8.9)
Ay Ap Az Auy 0 0 0 Ry

As1 Asz Asz Am 0 0 0 0

90

To facilitate the understanding of the efficiency analysis, the block-iterative schedule
is explained in detail. The partitioning in Equations 8.3-8.5 extends to the 5 x 4
case as follows. The factorization sweeps across pivot blocks from top left to bottom
right. The computation of each pivot block includes a triangularization step and
an update step. First, one annihilates all lower-triangular elements in the pivot
column using a systolic fast Givens computation. Then, one may update the column
blocks to the right of the pivot column by means of premultiplications, cf. phases 1
and 2 in Figure 8-12. In the example of Equation 8.9, one first annihilates all lower-
triangular elements in column block A;;. Second, one must premultiply the 5 x 3
block matrix consisting of column blocks (A;y Az Aj) for 1 <4 < 5. One applies the
systolic premultiplication once to each of these column blocks separately and then
proceeds with triangularizing column block A;;. The subsequent premultiplication
effects the matrix (A;3 Ay) for 2 <4 < 5, that is excluding the top row. Similarly,
after triangularizing column block A;3, the subsequent premultiplication effects matrix
(A44 As4)" only. Figure 8-13 shows the areas of matrix A that are effected by the fast
Givens computation (a) and the premultiplication (b) when handling column block i.

o T
x
T
I T | T
x x
& &
i l
R (0,~ IR
@ (b)

Figure 8-13: (a) The fast Givens computation of Equation 8.3 (or Equation 8.5) for
column block i effects the bottom (o3 — ¢ + 1)R rows. (b) After triangularizing
column block 7, one updates the (o3 — i+ 1)R X (o — i) R submatrix of A according
to Equation 8.4.

Now one may consider the general case where A is a o)y X oy matrix. The

91

behavior of the systolic fast Givens computation shown in Figures 8-2 and 8-3 is as
follows. The critical path is determined by the computations of the processors on
the diagonal of the array. Processor pg; requires 5 time steps to compute «, 3, 7,
and intermediate values of d; and wuy for each Givens transformation. Thus, the fast
Givens transformation of column block 7 uses 5(cps — i+ 1) R time steps. In addition,
starting up the pipeline takes 5R time steps and draining 10R time steps, resulting
in a total of 5(op — i + 1) R + 15R time steps.

The number of time steps for the premultiplications associated with column block 7
can be counted as follows. The systolic premultiplication requires 2 time steps per
output value according to Figures 8-7 and 8-8. For (oy — %) column blocks and with
(oar — i+ 1) row blocks each, the premultiplication takes (oy — i) - 2(opr — i+ 1)R
time steps. In addition, starting the pipeline requires 2R time steps and draining 4R

time steps for a total of 2(ox — i)(opy — i+ 1)R + 6R time steps.

The number of time steps for computing upper-triangular matrix R of the stream-
structured QR factorization is summed up as follows. For a ojs X on block matrix A
with block size R x R on a network of size R, where the postmultiplication can overlap

the preceding fast Givens computation by R time steps, one has

ON
T.(om,on,R) =~ > 5(om—i+1)R+15R
i=1
on—1
+ Z 2oy —i)(omy —i+1)R+6R
=1

on—1
_ Z R
i=1
1 3 101
= R(O'?VO'M — gO'?V +4O'MO'N — 50']2\[+ ?O'N - 5)
Using a network of size R, P = R? compute processors, and M = 3R memory pro-

cessors, the floating-point efficiency of the computation of upper triangular matrix R

of the QR factorization is

1
oXom — 30% R

ET(OM ON R) ~ :
)) 2 1.3 3 2 101 .

92

Asymptotically, that is for large network size R, o,;, and oy, the compute efficiency
approaches the optimal value of 100 %. As for the triangular-solver and LU factoriza-
tion, when oy, on > 1, E,(R) ~ R/(R + 3), and the algorithm achieves more than
90 % efficiency for R > 27.

Now consider the efficiency analysis of the computation of matrix @ of the QR fac-
torization. The number of multiply-and-add operations is Cg(M,N) = 2M?N —
MN — MN?. The most efficient schedule uses a block-iterative approach to overlap
and pipeline the systolic postmultiplications. The problem is partitioned recursively
until @ is a op X o block matrix, and each block is a R x R matrix. The post-
multiplications associated with column block ¢ of) also effect the all column blocks
1+1,...,05 to the right of 7, as shown in Figure 8-14. One applies the systolic post-
multiplication to individual row blocks. Thus, the computation of column block 2
applies o), systolic postmultiplications to a row block of size R X (oy — i + 1)R.
According to Figures 8-10 and 8-11, the computation of each output value requires
2 time steps. Therefore, the number of time steps for postmultiplying o,; row blocks
associated with column block i is 2Rop(op — @ + 1). With a startup time for the
systolic postmultiplication of 2R time steps, and a drainage time of 4R time steps,

the number of time steps for column block i is 2Rop (o — 7+ 1) + 6R.

oR

(O'M— i+1)R

Figure 8-14: One computes column block ¢ of M x M matrix) by partitioning the
computation into o, row blocks, each with R rows and (o3 —i+ 1) R columns. Each
row block is computed using a systolic postmultiplication. After the postmultiplica-
tion, the hatched area of the matrix holds the final values of (), while the shaded area
comprises intermediate values.

One obtains the number of time steps for computing matrix) of the QR factor-

93

ization of an M X N matrix A by summing up the number of time steps for each
update of matrix). Matrix @ is updated once for each set of Givens transforma-
tions produced by the systolic Givens computation array, and there are oy sets of
Givens transformations. One can save 2R time steps per column block by overlapping

consecutive computations.

ON on—1

Tylom,on,R) = > (2Rom(om —i+ 1) +6R) — Z 2R

i=1

= R (2012\/[01\1 — JJQVUM +onoy +4on + 2)

Using a network of size R, P = R? compute processors, and M = 3R memory
processors, the floating-point efficiency of computing matrix () of the QR-factorization
is

202,0N — 0% 0N — OMON R

Eq(UMa ON, R)

202,08 — 0%0Ny + OnOy + 4oy + 2 "R+3

Asymptotically, that is for large network sizes R, o, and oy, the compute efficiency
of computing matrix) approaches the optimal value of 100 %. When o, on > 1,
E,(R) ~ R/(R + 3), and one achieves more than 90 % efficiency for R > 27.

The number of time steps and efficiency of the entire QR factorization involves
the computation of both R and subsequently). The number of multiply-and-add
operations is C(M, N) = Cr(M,N) + Co(M,N) ~ 2M?N — N3/3. The number of
time steps for computing R and @ is the sum of the time steps for the individual
computations:

1 3 125
TqT(O'M,O'N,R) ~ R(ZO’IZMO'N—EO'?V'FE)O'MO'N §O'N+?O'N—3)

Using a network of size R, P = R? compute processors, and M = 3R memory

processors, the floating-point efficiency of the stream-structured QR factorization is

2 1.3
20_M0-N_§0-N . R
2 13 3 2 125 :
20508 — 308 +90m0N — 505 + Fon —3 R+3

Eqr (UMa On, R)

94

For o3 = oy = 1, the problem reduces to a single systolic QR factorization, and one

obtains a compute efficiency of

2
|

Eqr(O-M = 1,0'N = 1,R)

The expressions for execution time and compute efficiency are easier to compre-
hend when considering a square matrix A of dimension N x N. Then, o, = oy,
and one can express the execution time and efficiency as a function of ¢ = o)y = on
and R:

9 7 125
Tqr(O', R) ~ R (gO's + 50’2 + ?0' - 3)

and

o3 R

B?+2852 155, 9 R4+3

E,(0,R) =~

Note that for a fixed o, the QR factorization of an N x N matrix requires T(N) =
(50 + 20 4+ 2 — 3/0)N = O(N) time steps with (N/o)> compute processors.
Typically, when using fast Givens transformations to perform a QR factorization,
more than one type of transformation is used. This is done to improve the numeri-
cal stability of the algorithm. The above treatment has not shown this method for
QR factorization because it is less efficient than the stream-structured QR factoriza-
tion presented here. However, one may analyze the efficiency of this second form of
computation which has superior numerical properties, but is less efficient. The cost of
this alternate computation on an M x N matrix is the same, C(M, N) & 2M?N — N3,
Furthermore, the basic structure of all the systolic phases remain the same. However,
the number of time steps required for a more stable QR factorization includes the
conditional statement that checks for the type of Givens transformation. This check
must be done every time a processor applies a Givens transformation and the type
of the transformation must be sent through the compute array along with the o and

(8 values. Thus, the number of time steps required per input element for both the

95

systolic postmultiplication and the systolic premultiplication increases from two to

three. However, the additional time step is not used for executing a multiply-and-

add instruction, but for checking the type of the transformation. Thus, the number

of time steps required to execute such a QR factorization becomes:

. 3
Tqr (UMa on, R) = §TqT(O-Ma ON, R)

Using the same sized network, this algorithm has an efficiency of

. 2
Eqr(UMa OnN, R) = gEq'r(o-Ma ON, R)

(8.10)

Thus, when using this alternate form of QR factorization, the asymptotic efficiency

is bounded by approximately 66 %.

96

Chapter 9

Convolution

The convolution of vector a of length M with vector w of length N produces an
output vector b of length M + N —1. Without loss of generality, assume that M > N.

Element £ of b is given by

b, = Z a; - Wj (9.1)

itj=k+1

where

1< kK <M+N-1
1< i <M

1< j <N

9.1 Partitioning

One partitions the convolution into N/R subproblems by partitioning the sum in

Equation 9.1 as follows:

N/R
=1 i+j=k+1

97

where

1< k <M+R-1

1< i <M

(I-1)R+1< j <IR+1.

This partitioning expresses the convolution of a¢ and w as the sum of convolutions
of a with N/R weight vectors w;. Intuitively, one partitions weight vector w into
chunks of length R, computes the partial convolutions, and exploits the associativity

of the addition to form the sum of the partial convolutions when convenient.

9.2 Decoupling

Figure 9-1 demonstrates the data flow of a systolic convolution with N = R, while
Figure 9-2 shows the pseudo code executed by each compute processor. This design
is independent of the length M of vector a. The example in Figure 9-1 shows the
case where N = R = 4 and M = 5. Both vector a and weight vector w enter the
array from the left, and output vector b leaves the array on the right. Compute
processor p; is responsible for storing element w; of the weight vector. Thus, the
stream of elements w; folds over on the way from left to right through the array. As
elements of vector a are not stored for more than a single time step, they stream from
left to right without folding over. During each time step, the compute processors
multiply their local value w; with the element of a; arriving from the left, add the
product to an intermediate value of by that is also received from the left, and send the
new intermediate value to the right. The elements of b leave the array on the right.

The data movement in Figure 9-1 is illustrated by discussing the computation
of by = aqw; + aswy + asws + a;wy. The computation begins with time step 5 in
Figure 9-1 when element a4 enters processor p; on the left. Element w, is already
resident. Processor p; computes the intermediate value b} = a4 - wy, and sends it to

processor py. At time step 6, po receives az and b} from processor p; on the left. With

98

b, b3 b} b,

b, bl | by
Wy Wy W, W,y Wy Wy W W, Wy WolW; W, Wy Wy Wl W,
asa,a;a,a, asa, a; a,a, asa, aza, a, as a,la; a,a,
(€Y @ ©) (O
b, b3 b bl b b b} by b2 b,
bl | by | by bl [b2 | by [—by bl | b2 | by [—>b; b2 | b |—bs
Wy W, W, Wy W, W Wy Wy W W (W W (wy |w,
as|la, aja, a, as a,la; a,a, asla, asla, a, as a,a; a,a,
® C) U] ®
2 1
bg bs b7 b b; by
bl | b2 |—b. b2 |—=bs bl [—bs —b;
W (wy |w, W w Wy (W, W W (W (W, W (wy|w,
asla, ajla, a, asa,a; a, asla, a, as a,
©) (10) (1D (12

Figure 9-1: Systolic convolution of input sequence a; of length M = 5 with N =4
weights w;. Both the weights and input sequence are fed into the linear array of
R = 4 compute processors. Intermediate results are shown above the corresponding
processors. Value b% represents an intermediate value of by, after the first ¢ products
have been computed according to Equation 9.1.

weight ws already resident, processor p, computes intermediate value b7 = b} + az - wo.
In time step 7, values b3, ay, and w3 are available for use by processor ps. It computes
and sends intermediate value b = b? + a, - w3 towards processor py. At time step 8,
py receives b3, ap, and wy from p3, and computes by = b + a1 - wy. At time step 9, by

exits the compute array.

One uses the partitioning of Equation 9.2 to reduce a convolution with a weight
vector of length N into N/R systolic convolutions that match network size R of
a linear array of compute processors. In addition, one must employ one memory
processor on the left of the array to buffer vectors a and w, and another memory
processor on the right of the array to store intermediate values of the computation as
well as to compute the sum of the subproblems. Figure 9-3 illustrates the computation
of a convolution on a linear processor array. The decoupled systolic convolution
requires P = R compute processors and M = 2 memory processors. One may observe

that M = o(P) and, therefore, the convolution is decoupling efficient.

99

ifi =1
1+ 0
h <Net(west)
a < Net(west)xNet(west3) route Net(west3) — zo
forn:1.. N-1
a hxNet(west3) route Net(west) —Net(east),
a —Net(east2),
x1 —Net(east3),
Net(west3) — x,
To — X1
form:n.. M+i-1
a < hxNet(west3) route a —Net(east2),
x1 —Net(east3),
Net(west3) — x,
To — X1
nop route a —Net(east2), v; —Net(east3), zo — 1
nop route 0 —Net(east2), x; —Net(east3)

elseif i = R
h <Net(west)
Net(east2) < hxNet(west3)+Net(west2),
route Net(west) — h
form:2.. M+ N -1
Net(east2) « hxNet(west3)+Net(west2)

else
;<0
h «<Net(west)
a < Net(west) x h+Net(west2) route Net(west3) — 5
forn: 1.. N —i
a « hxNet(west3)+Net(west2) route Net(west) —Net(east),
a —Net(east2),
x1 —Net(east3),
Net(west3) — x,
To — X1
form:n.. M+ N -1
a < hxNet(west3)+Net(west2) route a —Net(east2),
x1 —Net(east3),
Net(west3) — x,
To — T1
nop route a —Net(east2), v; —Net(east3), zo — 1
nop route 0 —Net(east2), x; —Net(east3)

Figure 9-2: Pseudo code for compute processor p; in systolic convolution.

100

b, b3t b1t b,

b, b3 | b,
Wy W, Wy Wy W, W (W,
a, a, |a, a, |a,a; a, |aga,a,
D @) ©) 4
b} b bt by b3t by b3 byt
bit| b, b3t | b3? bit | b}? b3' | bi? |b}?
Wy W Ws Wy Wy Wy (W, | p2? W Wy Wo | 22
as |a,aza, a, |asayla, a, |a, asla, a, |a,a,as
©) (6) @) ()
b2! b2? b, b2' b2? b, b2l b2? Dby b, bs
b3t |, b3t bi? b | b3? b | b3? b3t |, b3?
Wy (W, +b§*2 bi? Wy (W, b2 bi? Wy (W bi? Wy W, bit
ay |8z 3x3, bt as |34 3533, bt as A4)33 bt as)ay
(C) (10) (11) (12)
bg
b, bg
Wy
as
(13) (19

Figure 9-3: Stream convolution of an input sequence of length M = 5 with N =4
weights on a linear array of R = N/2 = 2 compute processors and M = 2 memory
processors. Value bfc’i represents the computation of b, when the outer summation of
Equation 9.2 has been executed [times and the inner summation has been executed
17 times. Note that the memory tile on the right performs an addition to accumulate
the results of the partial convolutions.

9.3 Efficiency Analysis

The number of multiply-and-add operations in the convolution of a sequence a of
length M with a weight sequence w of length N is C(M,N) = MN. On a linear
network of size R with P(R) = R compute processors and M = 2 memory proces-
sors, one partitions the computation into ¢ = N/R subproblems, each of which is a
convolution of sequence a of length M with weight sequence w of length R. These

subproblems overlap perfectly, as is obvious from Figure 9-3.

One calculates the number of time steps used by the convolution as follows'. There

are 0 = N/R systolic convolutions on a linear array of R compute processors that

!The calculation for the efficiency of the convolution presented here corrects the earlier version
presented in [15]. The previous version would be correct if the output vector b was to have the same
length as the input vector a.

101

pipeline perfectly. Each of the systolic convolutions requires M + R time steps to
stream a sequence of length M through an array of size R, because each processor
executes one multiply-and-add operation per time step. There are R time steps
needed to drain the pipeline, but due to the perfect overlap of subsequent systolic
convolutions, this penalty is incurred only once. Thus, the total number of time steps
is:

Teonv(0, R) = (M + R) + R.

Using a linear network of size R consisting of P = R compute processors and M = 2

memory processors, the floating-point efficiency of the convolution is:

o R

E _ .
comn (0, 1) o+ (N+R)/M R+2

(9.3)

Given the assumption that M > N, one has N/M < 1, and the efficiency of the
stream-structured convolution approaches the optimal value of 100 % for large values
of 0 and R. Thus, for 0 > 1, E.ny = R/(R + 2) and one obtains more than 90 %
efficiency for R > 18. For N = R or, equivalently, o = 1, the stream convolution

reduces to a systolic convolution with a compute efficiency of

1 R
1+ (N+R/M R+2

Econv(a = 1a R) =

102

Chapter 10

Implementation on Raw

The Raw microprocessor [34, 33, 35] implements a superset of the features required
for an architecture to be considered a decoupled systolic architecture!, and thus Raw
is an ideal platform for experimenting with stream algorithms. Implementing stream
algorithms on Raw provides important insight into the behavior of stream algorithms
and architectural issues that arise in practice. This chapter discusses a Raw imple-
mentation of each of the previous examples and compares these results with the best
results one could obtain from an <deal DSA.

The Raw architecture consists of sixteen identical, programmable tzles. Each
tile contains an 8-stage in-order single issue MIPS-like compute processor, a 4-stage
pipelined FPU (for addition, subtraction, and multiplication), an unpipelined floating
point divider, a 32kB data cache, a static communication router® (also called a switch
or switch processor), and 96kB of instruction cache. The tiles are arranged in a four
by four mesh network, and connected by two 32 bit wide static networks. The static
router allows each tile to communicate with neighboring tiles to the north, south,
east, and west over both static networks. Each tile is independently programmed,
and within each tile, the instruction streams of the compute processor and the router

are separated. Therefore, the router has a separate set of registers and a separate

!That Raw is a DSA should not be surprising given that the salient features of the DSA’s
interprocessor network are based on Raw’s interconnect.

2Each tile contains an additional dynamic routers, but this feature is not of concern when treating
Raw as a DSA.

103

program counter.

The introduction to this thesis compared a stream algorithm to a distributed
memory implementation of a matrix multiplication on Raw. These results showed that
the stream algorithm implementation ran much faster than the distributed memory
implementation. The distributed memory matrix multiplication was implemented by
assuming that each Raw tile computes one sixteenth of the result matrix, and that
appropriate values of the operand matrices were replicated on the correct tiles. Such
an implementation requires no communication (other than cache misses). However,
implementation of any of the other examples in the distributed memory style would
require communication. This creates an issue of credibility as the author believes that
the most efficient form of communication for these problems on an architecture such
as Raw is to structure them as stream algorithms. Therefore, while the comparison
between stream algorithms and distributed memory implementation for the matrix
multiply serves as good motivation to explore the idea of stream algorithms, this
comparison will not be made for other examples.

However, in order to evaluate Raw as a DSA, a basis of comparison is still use-
ful, and the ideal DSA serves this purpose. An ideal DSA does not suffer from loop
overhead, branch mispredict penalties, or instruction cache misses. Furthermore, all
functional units in an ideal DSA have a single cycle latency. Therefore, the only
concern in implementing stream algorithms on an ideal DSA is scheduling the pos-
sibly heterogeneous computations of the stream algorithm in an efficient manner3.
The efficiency analyses in previous sections assume an ideal DSA. By comparing the
performance of stream algorithms implemented on Raw to that predicted for an ideal
DSA, one gains insight into the degree to which practical architectural concerns, such
as functional unit latency, effect efficiency and performance.

In order to interpret the results from Raw, it is important to understand how Raw

differs from an ideal DSA and how those differences can effect performance:

Raw lacks a floating point multiply-and-add unit: Raw’s lack of such a func-

3The concern of minimizing the overhead due to memory operations is of course accounted for
by the use of stream algorithms in the first place.

104

tional unit means that one should expect the cycle counts of stream algorithms
implemented on Raw to be twice that of those implemented on an ideal DSA.
However, this structural concern should not effect the efficiency of stream algo-
rithms implemented on Raw. When calculating efficiencies for Raw one simply

doubles the total number of operations that need to be executed.

Raw has separate switch and compute processors: While each DSA processor
has a single instruction stream that incorporates both routing and other instruc-
tions, each Raw tile has a compute processor and a switch processor. Thus, one
must splice the instruction stream of a DSA processor into two separate in-
struction streams for execution on Raw. When translating DSA instructions
to Raw instructions, one uses the route keyword to factor instruction streams.
Operations on the left side of the route will be executed on Raw’s compute pro-
cessor, while the move operations on the right must be translated into router
instructions. This creates additional difficulties for the programmer as all Raw
programs must synchronize the switch and compute processors. While program-
ming this synchronization can be difficult, it contributes only minimal overhead

and thus is not a barrier to performance.

Raw’s functional units have multi-cycle latency: Raw’s floating point adder and
multiplier both have four cycle latencies. Thus, simply translating a DSA’s fma
instruction into a multiply instruction followed by an add instruction does not
result in an efficient Raw program, as the add instruction will stall waiting for
the multiplication to finish. Again, this concern can be overcome by careful pro-
gramming that translates groups of four fma instructions into four pairs of Raw
multiplication and addition instructions and then schedules the multiplications

before the additions. For example, this sequence of DSA instructions:

fma a, a, b, ¢
fma d, d, e, f
fma g, g, h, 1
fma j, j, k, 1

105

could be efficiently translated into the following sequence of Raw instructions:

mul b, b, c
mul e, e, f
mul h, h, i

mul k, k, 1

add a, a, b
add d, d, e
add g, g, h
add j, j, k

However, this style of programming places additional burden on the program-
mer, and when the instructions operate on network data, it further complicates
the communication between the switch processors and the compute processors.
Furthermore, the data dependencies between fma instructions vary for differ-
ent stream algorithms. Thus, the translation of a set of fma instruction into
pairs of Raw multiplication and addition instructions is different for different
algorithms. The correct translation for each algorithm is discussed below in the

section on that algorithm.

Raw does not support the DSA memory interface: Each Raw compute pro-
cessor is a single-issue pipeline designed to be programmed in a standard load/store
manner and thus can execute only one memory operation (either a load or a
store) per cycle. Thus, using a Raw tile to simulate a DSA’s memory pro-
cessor does not provide an adequate rate of memory accesses. However, the
Raw simulator [32] is extensible and can be easily modified to meet the DSA’s
requirements. For these experiments, memory tiles are simulated as off-chip
devices that can transfer one word per cycle from DRAM to Raw’s network or
from the network to DRAM. Additionally, the simulated memory tiles can per-

form simple reduction operations during the store transfer. A typical example

106

from a stream algorithm is the operation Mem[A] = Mem[A] - x, where A is an

address and x represents data received on the network.

Raw’s divide unit has a twelve cycle latency and is not pipelined: The float-
ing point divider on each Raw processor has a twelve cycle latency and is not
pipelined. The decision to use a high latency and low occupancy divider in
Raw was made by observing the fact that division typically occurs less fre-
quently than multiplication and addition operations. This observation is con-
sistent with the efficiency analyses done for each of the five example algorithms.
However, the performance of stream algorithms that require divisions is effected
by the latency of the divider for small data sizes. Furthermore, because stream
algorithms reduce the instruction count by eliminating loads and stores from
the critical path, the performance degradation due to a high latency division is
more pronounced for stream algorithms than for more traditional methods of
programming®. The effects of Raw’s divider on stream algorithm performance

are discussed in more detail in the following discussion of individual examples.

Raw’s input ports are not symmetric: 1/O is a first class citizen on Raw, and
Raw’s pins are an extension of its static networks. However, due to packaging
constraints some of the outputs from the static networks are multiplexed onto a
single pin. This sharing of resources means that some networks can receive only
one word every other cycle instead of one word per cycle. Careful scheduling of
instructions can alleviate this concern, but again it places an additional burden

on the programmer.

Keeping these performance issues in mind, all five stream algorithms have been
implemented using the Raw simulator. The simulator was configured to support a
single Raw chip consisting of a four by four array of tiles. Each tile in this array was
programmed as a compute tile, and thus only operated on data in its local registers

or from the network. Memory tiles were simulated using off chip devices that could

4 A similar effect has been observed while increasing the issue width of super-scalar machines [29)].
As more instruction level parallelism is exploited the latency of the divider is exposed to a greater
degree, and has a greater effect on performance.

107

deliver the required rate of memory operations. For each algorithm, the performance
was tested on a number of data sizes and compared to that predicted for an ideal DSA.
The implementation and results of each individual algorithm are discussed below.

Each algorithm is implemented in a fully parameterized manner, so that the prob-
lems size, represented by M and N, could easily be modified. This parameterization
allows one to easily experiment with different problem sizes, and thus different values
of o, where ¢ is the ratio of the problem size to the network size, R. For the Raw
implementations of stream algorithms, the network size was fixed at R = 4, which
is the standard configuration for the prototype Raw processor. This parameterized
method of implementation is very flexible, but suffers from small overhead cost that
can effect the efficiency of small problem sizes.

For each algorithm, both the performance of the compute processors and the over-
all system performance (including the simulated memory processors) are presented
as a function of the problem size and o, respectively. The performance of the com-
pute tiles provides insight into how stream algorithms could benefit the current Raw
system, and how stream algorithms could perform for large computational fabrics.
The performance of the system, including compute tiles, provides insight into the
efficiency of Raw as a DSA, and it provides a direct comparison for the efficiency

analysis in previous sections.

10.1 Matrix Multiplication

The matrix multiplication is the first example of a stream algorithm on Raw. The
implementation is a fairly straightforward mapping of the DSA pseudo code from
Figure 5-2 to Raw code.

Because the matrix multiplication is so simple, it serves as a good baseline for
evaluating Raw’s performance when executing stream algorithms. Because there are
no divisions and there is abundant instruction level parallelism, analyzing the perfor-
mance on small data sizes can give insight into the overhead of this approach.

The amount of instruction level parallelism and thus the performance of the matrix

108

multiplication can be increased by adding three extra additions to the computation

performed on each processor. On the DSA, each processor performs an inner product:

c =0.0;
for(i = 0; i < N; i++)

fma ¢, c, $W1, $N2

As described above, this loop should be translated into the following efficient Raw

code:

c =0.0;

for(i = 0; i < N; i+=4) {
mul templ, $W1, $N2
mul temp2, $W1i, $N2
mul temp3, $Wi, $N2
mul temp4d, $W1, $N2

add ¢, ¢, templ
add temp2, temp2, temp3
add c, c, temp2

add c, c, temp4

However, due to the dependencies among the add instructions and the latency of
the floating point unit this code will be plagued by bypass stalls when executed.
Furthermore, these stalls will occur each time through the loop. Therefore, this loop
is not satisfactory. However, one may eliminate all of these stalls by adding a small

amount of work to be done after the completion of the loop:

c =0.0;
cl =0.0;
c2 =0.0;
c¢3 =0.0;

109

c4d = 0.0;

for(i = 0; i < N; i+=4) {
mul templ, $Wi, $N2
mul temp2, $Wi, $N2
mul temp3, $W1i, $N2
mul temp4d, $W1, $N2

add c1, ci1, templ
add c2, c2, temp2
add c3, c3, temp3
add c4, c4, temp4d

}

add c1, c1, c2

add c3, c3, c4

add c, c1, c3

This code executes without any bypass stalls during the loop. For large values of
N, the additional, post-loop add’s and their associated bypass stalls have a minimal
effect on performance.

By carefully considering such performance issues, one is able to execute a highly
efficient matrix multiplication on Raw. Figure 10-1 shows the efficiency of the com-
pute processors executing the matrix multiplication as a function of the problem size,
N, while Figure 10-2 shows the efficiency of the entire system (including memory
processors) as a function of o. For comparison, the results predicted for an ideal DSA
are also shown. Both x-axes use a logarithmic scale.

As these results indicate, Raw can achieve very high performance when executing
stream algorithms, even for small data sizes. In this case the data sizes range from
N =16 to N = 1024, and the efficiency of the compute processors range from 55 %
to 96 %. Even for small problem sizes these efficiencies are very high for a general
purpose processor. These results represent the benefits of the stream-structuring

methodology.

110

Matrix Multiplication

0.9 N

e

07 - Wi
06 - _-°

05
0.4
0.3
0.2

0.1

Compute Processor Efficiency

-0——-10 psA
~A-----A Raw

Figure 10-1: The efficiency of the compute processors executing a stream-structured
matrix multiplication is shown as a function of N. The solid curve represents the
results predicted by the efficiency analysis for an ideal DSA, while dotted curve rep-
resents measured results on Raw.

The difference between the performance on Raw and the performance of an ideal
DSA at small data sizes is due almost entirely to the manner in which the stream
algorithm was implemented. The matrix multiplication was done in a parameter-
ized fashion that allowed the data sizes to be easily changed. This design decision
means that a number of conditional statements must be executed in order to handle
a number of situations. For small data sizes, these conditional instructions and any
mispredictions can have a large effect on performance. If the algorithm had been
optimized for each particular data size, one would expect to see Raw’s performance

closer the predicted performance for an ideal DSA.

10.2 Triangular Solver

The second stream algorithm implemented on Raw is the triangular solver. When
partitioned, the triangular solver consists of two distinct systolic algorithms, one that

implements a triangular solver and one that updates intermediate values via matrix

111

Matrix Multiplication

0.9
0.8
0.7 - - -
0.6 A= &

0.5 A
0.4 T

0.3
0.2
0.1

System Efficiency

Ig(N/R)

-—+—-1 psA
A== Raw

Figure 10-2: The efficiency of all processors (both memory and compute) executing
a stream-structured matrix multiplication is shown as a function of 0 = N/R, where
R = 4. The solid curve represents the results predicted by the efficiency analysis for
an ideal DSA, while the dotted curve represents physical results measured on Raw.

multiplication.

The matrix multiplication used here differs slightly from the matrix multiplica-
tion described in the preceding section. The preceding systolic matrix multiplication
was not optimized for small problem sizes. However, the update operations in the
triangular solver consist of a series of square R X R matrix multiplications. For these
experiments, R was fixed such that R = 4. Therefore, the matrix multiplication
used for the triangular solver was optimized to handle pipelined square 4 X 4 matrix
multiplications.

As noted in the section on optimizing the matrix multiplication for Raw, the
data dependencies in the inner product computation can severely limit performance.
This is also the case when optimizing Raw code for the pipelined 4 x 4 problem size
required by the triangular solver. However, in this case, one cannot extract more
parallelism by unrolling the loop, simply because the loop is already so short. In this
case, one may make each processor responsible for four times the number of output

values. Overlapping the computation of four separate output values per processor

112

provides enough instruction level parallelism to schedule the code efficiently on Raw.
For values of N which are multiples of 4 and greater than 16, using this technique
will result in very efficient code. If N does not meet these criteria, the code cannot
be scheduled without bypass stalls and will not be maximally efficient. However, for

large problem sizes, the number of bypass stalls is insignificant.

Unlike the matrix multiplication, the performance of the systolic array for the
triangular solver is limited by the latency of Raw’s floating point divider. The divider
has a twelve cycle latency, and its result is sent to a special purpose register, which
takes an additional instruction to access. Furthermore, there is an interprocessor
dependence on the results of the divide operations. That is, the divide operations
performed by processors in row ¢ must wait for the divide operations of the processors
in row ¢ — 1 to complete before executing. For small problems sizes, the latency of

the floating point divider has a profound effect on performance.

The results shown in Figure 10-3 and Figure 10-4 confirm that for small problem
sizes, the triangular solver executed on Raw has much lower performance than what
one would expect for an ideal DSA. Figure 10-3 shows the efficiency of the compute
processors as a function of the problem size, NV, while Figure 10-4 shows the efficiency

of the overall system (including memory processors) as a function of o.

One should also compare the performance of the lower triangular solver to that of
the matrix multiplication. While both algorithms are very efficient for large problem
sizes, the performance of the triangular solver on small problem sizes is much lower
that that of the matrix multiplication. This difference in performance has two main
components. The first is that for a given value of N, the triangular solver does
half as much work as the matrix multiplication. This means that overhead costs are
more pronounced for the triangular solve than for the matrix multiplication, as there
are less useful operations to amortize the startup costs. The other component to
the performance of the triangular solver is Raw’s floating point divider. For small
problems sizes, where the number of divides is significant, these results suggest that

Raw would benefit from a lower-latency divider.

113

Lower Triangular Solver

Compute Processor Efficiency

0 T T T T T T]
4 5 6 7 8 9 10 11
lg(N)
-0——-10 psA
-A--=--A Raw

Figure 10-3: The efficiency of the compute processors executing a stream-structured
lower triangular solver is shown as a function of N. The solid curve represents the
results predicted by the efficiency analysis for an ideal DSA, while the dotted curve
represents physical results using Raw to implement a DSA.

10.3 LU Factorization

The LU factorization is the third example of implementing a stream algorithm on
Raw. The partitioning for this problem requires four systolic subproblems: an LU
factorization, a lower triangular solver, an upper triangular solver, and a matrix
multiplication. Like the triangular solvers, the performance of the systolic algorithm
for LU factorization operating on small problem sizes is limited by the latency of

Raw’s floating point divider and by overhead costs.

The performance issues in the LU factorization are very similar to those of the
triangular solver. Like the triangular solver, the systolic algorithm for LU factor-
ization has similar interprocessor data dependencies, which expose the latency of
Raw’s floating point divider. Furthermore, the updates to intermediate values of the
matrix multiplication are effected by the same issues that effect the systolic matrix
multiplication for the triangular solver, and the same optimizations are used in this

case.

114

Lower Triangular Solver

0.9
0.8
0.7

System Efficiency

Ig(N/R)

-—+—-1 psA
~A--=--A Raw

Figure 10-4: The efficiency of all processors executing a stream-structured lower
triangular solver is shown as a function of 0 = N/R, where R = 4. The solid curve
represents the results predicted by the efficiency analysis for an ideal DSA, while the
dotted curve represents physical results measured on Raw.

Figure 10-5 shows the efficiency of the compute processors executing an LU factor-
ization as a function of N, while Figure 10-6 shows the overall system performance as
a function of o = N/R. These results are very similar to the results for the triangular
solver. For small data sizes, the performance of the divider and the overhead costs
keep performance on Raw low compared to that of the ideal DSA. However, as the

problem size increases, the efficiencies get very high.

10.4 QR Factorization

The QR factorization is the fourth, and most complicated, example of implementing
a stream algorithm on Raw. All results assume that the matrix being factored is an
N x N matrix. Figure 10-7 shows the efficiency the compute processors computing
matrix R as a function of the problem size N. Figure 10-8 shows the efficiency of
the entire system (including memory processors) computing matrix R as a function

of 0. Figure 10-9 shows the efficiency of computing the entire QR factorization as a

115

LU Factorization

Compute Processor Efficiency

-0——-10 psA
~A-=--A Raw

Figure 10-5: The efficiency of the compute processors executing a stream-structured
LU factorization is shown as a function of N. The solid curve represents the results
predicted by the efficiency analysis, while the dotted curve represents physical results
measured on Raw.

function of the problem size N. Figure 10-10 shows the efficiency of all processors
computing the QR factorization as a function of o.

There are two issues that arise in translating the pseudocode of Figures 8-4 and 8-
9 into efficient Raw code. The first is the fact that the pseudocode makes use of the
DSA’s ability to simultaneously operate on network port and route the data from

that port into a register, as shown in this line of pseudocode from Figure 8-9:

Net(south) < xxNet(east)+Net(north)
route Net(east) —Net(west), Net(north) — a

The compute processor on a Raw tile cannot simultaneously route data from the
network into a functional unit and into a register. However, the static router on a
Raw tile can route data to the compute processor and into one of its own registers
simultaneously. That data can then be sent from the router register to the compute
processor as soon as the next cycle. Using this technique helps one to translate the

DSA pseduocode into efficient Raw code.

116

LU Factorization

0.9
0.8
0.7

System Efficiency

Ig(N/R)

——-1 measured
=A==~ predicted

Figure 10-6: The efficiency of all processors executing a stream-structured LU factor-
ization is shown as a function of 0 = N/R, where R = 4. The solid curve represents
the results predicted by the efficiency analysis for an ideal DSA, while the dotted
curve represents physical results measured on Raw.

The second issue of which one must be aware when implementing a stream-
structured QR factorization on Raw is the loop-carry dependence seen in the pseu-
docode of Figure 8-9. The value of x calculated in loop iteration n is dependent on
the value calculated in iteration n — 1. This is not a problem for the DSA, with
its single cycle fma latency. However, on Raw, with its multicycle functional unit la-
tency, this dependence can become a performance barrier. However, one may increase
the instruction level parallelism and thus avoid bypass stalls by computing multiple
independent outputs on a single Raw tile. Computing four output elements per tile
increases the instruction level parallelism to the point that the code executes with-
out bypass stalls. For the systolic premultiplication, the columns are independent,
and thus the computation of four separate columns can be grouped together. For
systolic postmultiplication, the computation of separate rows may be grouped. For
the systolic Givens computation, the time spent performing and waiting for division
operations dominates the execution time and this optimization is insignificant.

The design of Raw’s floating point divider has an even more significant effect on

117

Matrix Triangularization
(Computing R of the QR Factorization)

Compute Processor Efficiency

-0——-10 psA
~A-----A Raw

Figure 10-7: The efficiency of the compute processors executing a stream-structured
QR factorization and computing only R is shown as a function of N. The solid curve
represents the results predicted by the efficiency analysis for an ideal DSA, while the
dotted curve represents physical results measured on Raw.

the performance of the QR factorization than in the LU factorization or the triangular
solver. As one can see in Figure 8-4, the systolic Givens computation must execute one
division to compute a value o, and then must immediately execute another division
to compute a value 3. All subsequent computations done by this tile depend on these
values. Here both the twelve-cycle latency of Raw’s divider and the fact that it is
not pipelined severely limit the performance of the QR factorization. The systolic
premultiplication and postmultiplication operations can be implemented extremely
efficiently, but the size of the matrix must be very large before the efficiency of these
operations dominates the total number of cycles. The difference between the Raw
results and those of an ideal DSA is not a failure of stream algorithms. Rather it
serves to highlight the point that when implementing algorithms that are designed to
execute one floating point operation per cycle, the effects of a long latency operation,

even one as seldom used as division, become readily apparent.

The latency of the square root operation also effects the performance of the QR

factorization on Raw. On Raw, square roots are calculated in software and take

118

Matrix Triangularization
(Computing R of the QR Factorization)

0.9
0.8
0.7

System Efficiency

Ig(N/R)

-—+—-1 psA
A== Raw

Figure 10-8: The efficiency of all processors executing a stream-structured QR factor-
ization, but omitting the computation of) is shown as a function of 0 = N/R, where
R = 4. The solid curve represents the results predicted by the efficiency analysis,
while the dashed curve represents physical results using Raw to implement a DSA.

hundreds of cycles to complete. However, square roots are only computed on the
diagonal of the processor array and each diagonal processor computes only a single
square root, operation per systolic Givens computation and there are no dependencies
between square root operations. Therefore, the latency of this operation has a minimal
effect on performance and then only for very small values of .

As mentioned in the efficiency analysis of the QR factorization in Chapter 8,
there is a better algorithm for QR factorization in terms of numerical stability. This
alternative form of fast Givens rotations involves using different types of rotations
depending on the characteristics of the input data. In addition to computation, this
algorithm involves conditional statements that evaluate the type of Givens transfor-
mations. Due to these extra instructions, the upper bound for the efficiency on the
DSA executing a QR factorization based on this second type of givens transforma-
tion would be 66 %. However, on Raw the efficiency of this implementation would be
much worse. In addition to the extra overhead of the branch instruction itself, the

Raw implementation would suffer from branch mispredict penalties. Furthermore,

119

QR Factorization

Compute Processor Efficiency

-0——-10 psA
~A-----A Raw

Figure 10-9: The efficiency of the compute processors executing a stream-structured
QR factorization is shown as a function of N. The solid curve represents the results
predicted by the efficiency analysis, while the dotted curve represents results measured
on Raw.

having the conditional statements in the loop would make optimizing the instruc-
tion schedule to eliminate bypass stalls more difficult. It is possible that for large
data sizes, slow Givens transformations may be faster than this alternate form of fast
Givens transformations. Although slow Givens transformations require more square
root, operations and more fma operations, they require no conditional code (and no

branch mispredicts) and thus might be easier to optimize for Raw.

10.5 Convolution

Convolution is the final stream algorithm implemented on Raw. As described in
Chapter 9, convolution is an operation on two vectors, one of length M and one of
length N, where it is assumed that M > N. Figure 10-11 shows the efficiency of the
compute processors executing a stream-structured convolution as a function of N,
while Figure 10-12 shows the efficiency of the system (including memory processors)

as a function of 0 = N/R. In this case, different curves show results obtained on Raw

120

QR Factorization

0.9
0.8
0.7

System Efficiency

-—+—-1 psA
A== Raw

Figure 10-10: The efficiency of the all processors executing a stream-structured QR
factorization is shown as a function of ¢ = N/R, where R = 4. The solid curve
represents the results predicted by the efficiency analysis for an ideal DSA, while the
dotted curve represents physical results measured on Raw.

for different values of M. These results are compared to the results predicted for an
ideal DSA®.

To translate the DSA pseudocode of Figure 9-2 to Raw code, one must account
for the fact that Raw has only two networks connecting processors and not the three
networks assumed by the DSA. This turns out not to be a problem because Raw also
lacks a floating point multiply-and-add instruction. Thus a DSA fma instruction is
translated into two Raw instructions, and Raw’s two networks can easily deliver three
operands in two cycles.

One should also note that, like the QR factorization, the DSA pseudocode for
convolution uses instructions that simultaneously route data into a functional unit
and a register. However, once again the programmer can use the switch processor’s
registers to temporarily store the value rather than routing it into Raw’s compute

Processor.

50nly one curve is shown for the ideal DSA, because the predictions for all three sizes of M vary
only slightly

121

Convolution

-~ ! %----_E s pp— 2 — 2 — S p— <E>. ______ % —
2 0.9 [N S D S et
S i i Y
G 08
o 07 A
g 0.6 — v v v V4
@ 05 Y
]
E 0.4 —
o 03
2 02
5 o
S)
0 T T T T T T T]
2 3 4 5 6 7 8 9 10
lg(N)
-+— psaA

-A=-=--\ Raw, M = 4096
> —-= Raw, M = 512
A% V Raw, M = 64

Figure 10-11: The efficiency of the compute processors executing a stream-structured
convolution is shown as a function of the length N of the shorter vector. The solid
curve represents the results predicted by the efficiency analysis for an ideal DSA, while
the dotted curves represents physical results measured on Raw for three separate data
sizes.

For a stream-structured convolution implemented on Raw, the performance de-
pends on the size of M, and not the size of N. The loss of performance for small
sizes of M is due entirely to the overhead associated with the parameterized approach
taken to implement these examples. Like the other examples, the performance of the
convolution for small values of M on Raw would benefit significantly from optimizing

for particular data sizes.

10.6 Summary

Analyzing performance data for the above examples leads to the following observa-

tions:

e Stream algorithms achieve high efficiencies, not just in theory, but also in prac-

tice.

e Stream algorithms are an efficient way to program single chip tiled architectures

122

Convolution

1 —
0.9 —
0.8 —
>
S 07 4 o o o o o o - "
8 === e e N TSLED A TTeren N rerer =
LR i G s s s e
L 0.5
g 0.4 — v AV4 V
3 A\ v
> 0.3
%)
0.2 —
0.1
0 T T T T T T T]
0 1 2 3 4 5 6 7 8
Ig(N/R)
-+—1 psaA

-A-----A Raw, M = 4096
~<>—-=<> Raw, M =512
A% V Raw, M = 64

Figure 10-12: The efficiency of all processors executing a stream-structured convo-
lution is shown as a function of ¢ = N/R, where R = 4 and N is the length of
the shorter vector. The solid curve represents the results predicted by the efficiency
analysis, while the dotted curves represents physical results for three different data
sizes using Raw to implement a DSA.

such as Raw.

e For small data sizes better performance could be obtained by tailoring the

implementation for that specific size.

e Stream algorithms would execute almost twice as fast on Raw if Raw had a

floating point multiply-and-add unit.

e The performance of the floating point divider has a significant impact on per-

formance of stream algorithms for small data sizes.

e The performance per area of Raw could be increased by eliminating Raw’s data

caches and adding more functional units.

e The system performance for all examples would improve if executed on a larger

Raw fabric.

123

e The performance of all examples is expected to continue increasing as problem

size increases®.

6The amount of time required to run the Raw simulator for large problem sizes limited the
amount of data that could be collected before publication of this thesis.

124

Chapter 11

Conclusion

This thesis has presented stream algorithms and the decoupled systolic architecture,
which comprise a scalable means of performing highly efficient computation. Both
the scalability and the efficiency of this approach are due to a design methodology
that uses a bounded amount of storage for each processing element and reduces the
amount of memory operations on the critical path of computation. The theoretical
treatment of stream algorithms on an ideal DSA has shown that the efficiency of this
approach can reach 100 % asymptotically, while the experimental treatment on Raw
has shown that stream algorithms achieve high efficiencies in practice.

Unlike systolic arrays, the decoupled systolic architecture allows one to execute
programmed stream algorithms of arbitrary problem size on a constant-sized machine.
In contrast to contemporary parallel RISC architectures, the decoupled systolic ar-
chitecture enables one to increase efficiency by increasing the number of processors.

This work presented five concrete examples of stream algorithms for a matrix
multiplication, a triangular solver, an LU factorization, a QR factorization, and a
convolution. All examples were analyzed theoretically and implemented on the Raw
microprocessor. Table 11.1 summarizes the results for these applications. For each
stream algorithm, the table lists the number of compute processors P and memory
processors M as a function of network size R. Table 11.1 also compares the execution
times 7" and efficiencies E of stream algorithms, and presents the maximum compute

processor efficiency achieved on a 4 X 4 Raw configuration FE, ., .

125

App. P(R) | M(R) T(o, R) E(o, R) Eraw(0)

mat. mult. || R? | 2R o*R + 3R R 96

tri. solver R? 3R L(0® + 0%+ 60 —2) m s 91
0.3

LU fact. R2 3R R(%U?’ + %02 + %U - 2) mﬂ . RL—;-?) .89

QR fact. R2 3R R(go'?’ + %0-2 + %0- _ 3) W%%%a_—g . RL;?) 90

R .96

cony. R 2 O'(M+R)+R W'R—H

Table 11.1: Summary of stream algorithms. The table shows the number of com-
pute processors P and the number of memory processors M. In addition, the table
compares the execution time T and compute efficiency E and compares that to the
maximum compute processor efficiency achieved on a 4 x 4 configuration of Raw
tiles, Fqw-

The experience with the design of stream algorithms has revealed three notewor-
thy insights. First of all, the design philosophy for stream algorithms appears to be
quite versatile. One is able to formulate stream algorithms even for relatively com-
plex algorithms like the QR factorization. Secondly, stream algorithms achieve high
compute efficiency on a general purpose architecture where conventional designs have
not. Third, stream algorithms exploit short, fast wires making them a good match

for modern architectures concerned with wire delay.

126

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Com-

puter Programs. MIT Press, Cambridge, MA, 2nd edition, 1996.

Marco Annaratone, Emmanuel Arnould, Thomas Gross, H. T. Kung, Monica S.
Lam, Onat Menzilcioglu, Ken Sarocky, and Jon A. Webb. Warp Architecture and
Implementation. In 13th Annual Symposium on Computer Architecture, pages

346-356, 1986.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jeenifer
Widom. Models and Issues in Data Stream Systems. In Proceedings of 21st
ACM Symposium on Principles of Database Systems, 2002.

Ziv Bar-Yossef, Omer Reingold, Ronen Shaltiel, and Luca Trevisan. Streaming

Computation of Combinatorial Objects. In Complexity, 2002.

Manuel E. Benitez and Jack W. Davidson. Code Generation for Streaming: an
Access/Execute Mechanism. In Proceedings of the 4th International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 132-141, 1991.

A. Bojanczk, R. P. Brent, and H. T. Kung. Numerically Stable Solution of
Dense Systems of Linear Equations Using Mesh Connected Processors. Technical

report, Carnegie-Mellon University, Department of Computer Science, May 1981.

Shekhar Borkar, Robert Cohn, George Cox, Thomas Gross, H. T. Kung, Monica

Lam, Margie Levine, Brian Moore, Wire Moore, Craig Peterson, Jim Susman,

127

Jim Sutton, John Urbanski, and Jon Webb. Supporting Systolic and Memory
Communication in iWarp. In 17th International Symposium on Computer Ar-

chitecture, pages 70-81, Seattle, WA, May 1990.

[8] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, MA, 1990.

[9] Erik Elmroth and Fred G. Gustavson. Applying recursion to serial and parallel
QR factorization leads to better performance. IBM Journal of Research and

Development, 44(4):605-624, 2000.

[10] W. M. Gentleman and H. T. Kung. Matrix triangularization by systolic arrays.
In Proceedings of SPIE Symposium, Vol. 298, Real-Time Signal Processing 1V,
The Society of Photo-optical Instrumentation Engineers, August 1981.

[11] Gene H. Golub and Charles F. Van Loan. Matriz Computations. John Hopkins

University Press, Baltimore and London, 2nd edition, 1993.

[12] Thomas Gross and Monica S. Lam. Compilation for a high-performance systolic
array. In Proceedings of the 1986 SIGPLAN symposium on Compiler contruction,
pages 27-38. ACM Press, 1986.

[13] Daniel W. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[14] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The Future of Wires. Pro-
ceedings of the IEEE, 89(4):490-504, April 2001.

[15] Henry Hoffmann, Volker Strumpen, and Anant Agarwal. Stream Algorithms
and Architecture. Technical Report MIT-LCS-TM-636, MIT Laboratory for
Computer Science, Cambridge, MA, March 2003.

[16] R.C. Holt and Tom West. Turing Reference Manual (Seventh Edition). Holt

Software Associates Inc.

128

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

Dror Irony and Sivan Toledo. Communication-efficient Parallel Dense LU Using a
3-dimensional Approach. In Proceedings of the 10th SIAM Conference on Parallel
Processing for Scientific Computing, March 2001.

Ujval J. Kapasi, Peter Mattson, William J. Dally, John D. Owens, and Brian
Towles. Stream Scheduling. In Proceedings of the 3rd Workshop on Media and
Stream Processing, Austin, TX, December 2001.

Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung
Namkoong, John D. Owens, Brian Towles, Andrew Chang, and Scott
Rixner. Imagine: Media Processing with Streams. IEEE Micro, 21(2):35-46,
March/April 2001.

H. T. Kung. Why Systolic Architectures? IEEE Computer, 15(1):37-46, January
1982.

H. T. Kung and Charles E. Leiserson. Algorithms for VLSI Processor Arrays. In
Carver A. Mead and Lynn A. Conway, editors, Introduction to VLSI Systems,
chapter 8.3, pages 271-292. Addison-Wesley, 1980.

F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

Charles E. Leiserson and James B. Saxe. Retiming Synchronous Circuitry. Al-

gorithmica, 6:5-35, 1991.

Alber A. Liddicoat and Michael J. Flynn. High-Performance Floating Point
Divide. In Euromicro Symposium on Digital System Design, pages 354-361,
Warsaw, Poland, September 2001.

Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark
Horowitz. Smart Memories: A Modular Reconfigurable Architecture. In 28th An-

nual International Symposium on Computer Architecture, pages 161-171, June

2000.

129

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

Merriam-Webster, Inc. Merriam-Webster’s Collegiate Dictionary. Springfield,
MA, 10th edition, 2001.

Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

Ramdass Nagarajan, Karthikeyan Sankaralingam, Doug C. Burger, and Steve W.
Keckler. A Design Space Evaluation of Grid Processor Architectures. In 34th
Annual International Symposium on Microarchitecture, pages 40-51, December

2001.

Stuart F. Olberman and Michael J. Flynn. Implementing Division and Other
Floating-Point Operations: A System Perspective. In Proceedings of SCAN-95,
International Symposium on Scientific Computing, Computer Arithmetic, and

Validated Numerics, Wuppertal, Germany, September 1995.

James E. Smith. Decoupled Access/Execute Computer Architectures. ACM
Transactions on Computer Systems, 2(4):289-308, November 1984.

Robet Stephens. A survey of stream processing. Acta Informatica, 34(7):491-541,
1997.

Michael B. Taylor. btl extension —~ for jedi masters.

http://cag.lcs.mit.edu/raw/memo/19/btl-advanced.html.

Michael B. Taylor. The Raw Processor Specification.
ftp://ftp.cag.lcs.mit.edu/pub/raw/documents/RawSpec99.pdf.

Michael B. Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben
Greenwald, Henry Hoffmann, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert
Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt
Frank, Saman Amarasinghe, and Anant Agarwal. The Raw Microprocessor:

A Computational Fabric for Software Circuits and General-Purpose Programs.

IEEE Micro, 22(2):25-36, March/April 2002.

130

[35]

[36]

[37]

[38]

Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Gho-
drat, Ben Greenwald, Henry Hoffmann, Paul Johnson, Walter Lee, Arvind Saraf,
Nathan Shnidman, Volker Strumpen, Saman Amarasinghe, and Anant Agarwal.
A 16-issue Multiple-program-counter Microprocessor with Point-to-point Scalar
Operand Network. In Proceedings of the IEEE International Solid-State Circuits
Conference, February 2003.

William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamlt: A Lan-
guage for Streaming Applications. In Proceedings of the 2002 International Con-

ference on Compiler Construction, Grenoble, France, 2002.

Sivan Toledo. A Survey of Out-of-Core Algorithms in Numerical Linear Algebra.
In James Abello and Jeffrey Scott Vitter, editors, Fxternal Memory Algorithms
and Visualization, pages 161-180. American Mathematical Society Press, Prov-

idence, RI, 1999.

Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley, 1995.

131

